CS 450 - Numerical Analysis

Chapter 10: Boundary Value Problems for Ordinary Differential Equations ${ }^{\dagger}$

Prof. Michael T. Heath
Department of Computer Science
University of Illinois at Urbana-Champaign
heath@illinois.edu

January 28, 2019

[^0]
Boundary Value Problems

Boundary Value Problems

- Side conditions prescribing solution or derivative values at specified points are required to make solution of ODE unique
- For initial value problem, all side conditions are specified at single point, say t_{0}
- For boundary value problem (BVP), side conditions are specified at more than one point
- k th order ODE, or equivalent first-order system, requires k side conditions
- For ODEs, side conditions are typically specified at endpoints of interval $[a, b]$, so we have two-point boundary value problem with boundary conditions (BC) at a and b.

Boundary Value Problems, continued

- General first-order two-point BVP has form

$$
\boldsymbol{y}^{\prime}=\boldsymbol{f}(t, \boldsymbol{y}), \quad a<t<b
$$

with $B C$

$$
\boldsymbol{g}(\boldsymbol{y}(a), \boldsymbol{y}(b))=\mathbf{0}
$$

where $\boldsymbol{f}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ and $\boldsymbol{g}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$

- Boundary conditions are separated if any given component of \boldsymbol{g} involves solution values only at a or at b, but not both
- Boundary conditions are linear if they are of form

$$
\boldsymbol{B}_{a} \boldsymbol{y}(a)+\boldsymbol{B}_{b} \boldsymbol{y}(b)=\boldsymbol{c}
$$

where $\boldsymbol{B}_{a}, \boldsymbol{B}_{b} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{c} \in \mathbb{R}^{n}$

- BVP is linear if ODE and BC are both linear

Example: Separated Linear Boundary Conditions

- Two-point BVP for second-order scalar ODE

$$
u^{\prime \prime}=f\left(t, u, u^{\prime}\right), \quad a<t<b
$$

with $B C$

$$
u(a)=\alpha, \quad u(b)=\beta
$$

is equivalent to first-order system of ODEs

$$
\left[\begin{array}{l}
y_{1}^{\prime} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
y_{2} \\
f\left(t, y_{1}, y_{2}\right)
\end{array}\right], \quad a<t<b
$$

with separated linear $B C$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1}(a) \\
y_{2}(a)
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1}(b) \\
y_{2}(b)
\end{array}\right]=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

Existence and Uniqueness

- Unlike IVP, with BVP we cannot begin at initial point and continue solution step by step to nearby points
- Instead, solution is determined everywhere simultaneously, so existence and/or uniqueness may not hold
- For example,

$$
u^{\prime \prime}=-u, \quad 0<t<b
$$

with $B C$

$$
u(0)=0, \quad u(b)=\beta
$$

with b integer multiple of π, has infinitely many solutions if $\beta=0$, but no solution if $\beta \neq 0$

Existence and Uniqueness, continued

- In general, solvability of BVP

$$
\boldsymbol{y}^{\prime}=\boldsymbol{f}(t, \boldsymbol{y}), \quad a<t<b
$$

with $B C$

$$
\boldsymbol{g}(\boldsymbol{y}(a), \boldsymbol{y}(b))=\mathbf{0}
$$

depends on solvability of algebraic equation

$$
\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{y}(b ; \boldsymbol{x}))=\mathbf{0}
$$

where $\boldsymbol{y}(t ; \boldsymbol{x})$ denotes solution to ODE with initial condition $\boldsymbol{y}(a)=\boldsymbol{x}$ for $\boldsymbol{x} \in \mathbb{R}^{n}$

- Solvability of latter system is difficult to establish if \boldsymbol{g} is nonlinear

Existence and Uniqueness, continued

- For linear BVP, existence and uniqueness are more tractable
- Consider linear BVP

$$
\boldsymbol{y}^{\prime}=\boldsymbol{A}(t) \boldsymbol{y}+\boldsymbol{b}(t), \quad a<t<b
$$

where $\boldsymbol{A}(t)$ and $\boldsymbol{b}(t)$ are continuous, with BC

$$
\boldsymbol{B}_{a} \boldsymbol{y}(a)+\boldsymbol{B}_{b} \boldsymbol{y}(b)=\boldsymbol{c}
$$

- Let $\boldsymbol{Y}(t)$ denote matrix whose ith column, $\boldsymbol{y}_{i}(t)$, called ith mode, is solution to $\boldsymbol{y}^{\prime}=\boldsymbol{A}(t) \boldsymbol{y}$ with initial condition $\boldsymbol{y}(a)=\boldsymbol{e}_{i}$, ith column of identity matrix
- Then BVP has unique solution if, and only if, matrix

$$
\boldsymbol{Q} \equiv \boldsymbol{B}_{a} \boldsymbol{Y}(a)+\boldsymbol{B}_{b} \boldsymbol{Y}(b)
$$

is nonsingular

Existence and Uniqueness, continued

- Assuming \boldsymbol{Q} is nonsingular, define

$$
\boldsymbol{\Phi}(t)=\boldsymbol{Y}(t) \boldsymbol{Q}^{-1}
$$

and Green's function

$$
\boldsymbol{G}(t, s)=\left\{\begin{array}{rr}
\boldsymbol{\Phi}(t) \boldsymbol{B}_{\mathbf{a}} \boldsymbol{\Phi}(a) \boldsymbol{\Phi}^{-1}(s), & a \leq s \leq t \\
-\boldsymbol{\Phi}(t) \boldsymbol{B}_{b} \boldsymbol{\Phi}(b) \boldsymbol{\Phi}^{-1}(s), & t<s \leq b
\end{array}\right.
$$

- Then solution to BVP given by

$$
\boldsymbol{y}(t)=\boldsymbol{\Phi}(t) \boldsymbol{c}+\int_{a}^{b} \boldsymbol{G}(t, s) \boldsymbol{b}(s) d s
$$

- This result also gives absolute condition number for BVP

$$
\kappa=\max \left\{\|\boldsymbol{\Phi}\|_{\infty},\|\boldsymbol{G}\|_{\infty}\right\}
$$

Conditioning and Stability

- Conditioning or stability of BVP depends on interplay between growth of solution modes and boundary conditions
- For IVP, instability is associated with modes that grow exponentially as time increases
- For BVP, solution is determined everywhere simultaneously, so there is no notion of "direction" of integration in interval $[a, b]$
- Growth of modes increasing with time is limited by boundary conditions at b, and "growth" (in reverse) of decaying modes is limited by boundary conditions at a
- For BVP to be well-conditioned, growing and decaying modes must be controlled appropriately by boundary conditions imposed

Numerical Methods for BVPs

Numerical Methods for BVPs

- For IVP, initial data supply all information necessary to begin numerical solution method at initial point and step forward from there
- For BVP, we have insufficient information to begin step-by-step numerical method, so numerical methods for solving BVPs are more complicated than those for solving IVPs
- We will consider four types of numerical methods for two-point BVPs
- Shooting
- Finite difference
- Collocation
- Galerkin

Shooting Method

- In statement of two-point BVP, we are given value of $u(a)$
- If we also knew value of $u^{\prime}(a)$, then we would have IVP that we could solve by methods discussed previously
- Lacking that information, we try sequence of increasingly accurate guesses until we find value for $u^{\prime}(a)$ such that when we solve resulting IVP, approximate solution value at $t=b$ matches desired boundary value, $u(b)=\beta$

Shooting Method, continued

- For given γ, value at b of solution $u(b)$ to IVP

$$
u^{\prime \prime}=f\left(t, u, u^{\prime}\right)
$$

with initial conditions

$$
u(a)=\alpha, \quad u^{\prime}(a)=\gamma
$$

can be considered as function of γ, say $g(\gamma)$

- Then BVP becomes problem of solving equation $g(\gamma)=\beta$
- One-dimensional zero finder can be used to solve this scalar equation

Example: Shooting Method

- Consider two-point BVP for second-order ODE

$$
u^{\prime \prime}=6 t, \quad 0<t<1
$$

with $B C$

$$
u(0)=0, \quad u(1)=1
$$

- For each guess for $u^{\prime}(0)$, we will integrate resulting IVP using classical fourth-order Runge-Kutta method to determine how close we come to hitting desired solution value at $t=1$
- For simplicity of illustration, we will use step size $h=0.5$ to integrate IVP from $t=0$ to $t=1$ in only two steps
- First, we transform second-order ODE into system of two first-order ODEs

$$
\boldsymbol{y}^{\prime}(t)=\left[\begin{array}{l}
y_{1}^{\prime}(t) \\
y_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{l}
y_{2} \\
6 t
\end{array}\right]
$$

Example, continued

- We first try guess for initial slope of $y_{2}(0)=1$

$$
\begin{aligned}
\boldsymbol{y}^{(1)} & =\boldsymbol{y}^{(0)}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1.0 \\
1.5
\end{array}\right]+2\left[\begin{array}{l}
1.375 \\
1.500
\end{array}\right]+\left[\begin{array}{l}
1.75 \\
3.00
\end{array}\right]\right)=\left[\begin{array}{l}
0.625 \\
1.750
\end{array}\right] \\
\boldsymbol{y}^{(2)} & =\left[\begin{array}{l}
0.625 \\
1.750
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{l}
1.75 \\
3.00
\end{array}\right]+2\left[\begin{array}{l}
2.5 \\
4.5
\end{array}\right]+2\left[\begin{array}{l}
2.875 \\
4.500
\end{array}\right]+\left[\begin{array}{l}
4 \\
6
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
\end{aligned}
$$

- So we have hit $y_{1}(1)=2$ instead of desired value $y_{1}(1)=1$

Example, continued

- We try again, this time with initial slope $y_{2}(0)=-1$

$$
\begin{aligned}
\boldsymbol{y}^{(1)} & =\left[\begin{array}{r}
0 \\
-1
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{r}
-1 \\
0
\end{array}\right]+2\left[\begin{array}{r}
-1.0 \\
1.5
\end{array}\right]+2\left[\begin{array}{r}
-0.625 \\
1.500
\end{array}\right]+\left[\begin{array}{r}
-0.25 \\
3.00
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
-0.375 \\
-0.250
\end{array}\right] \\
\boldsymbol{y}^{(2)} & =\left[\begin{array}{l}
-0.375 \\
-0.250
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{r}
-0.25 \\
3.00
\end{array}\right]+2\left[\begin{array}{l}
0.5 \\
4.5
\end{array}\right]+2\left[\begin{array}{l}
0.875 \\
4.500
\end{array}\right]+\left[\begin{array}{l}
2 \\
6
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
0 \\
2
\end{array}\right]
\end{aligned}
$$

- So we have hit $y_{1}(1)=0$ instead of desired value $y_{1}(1)=1$, but we now have initial slope bracketed between -1 and 1

Example, continued

- We omit further iterations necessary to identify correct initial slope, which turns out to be $y_{2}(0)=0$

$$
\begin{aligned}
\boldsymbol{y}^{(1)} & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0.0 \\
1.5
\end{array}\right]+2\left[\begin{array}{l}
0.375 \\
1.500
\end{array}\right]+\left[\begin{array}{l}
0.75 \\
3.00
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
0.125 \\
0.750
\end{array}\right] \\
\boldsymbol{y}^{(2)} & =\left[\begin{array}{l}
0.125 \\
0.750
\end{array}\right]+\frac{0.5}{6}\left(\left[\begin{array}{l}
0.75 \\
3.00
\end{array}\right]+2\left[\begin{array}{l}
1.5 \\
4.5
\end{array}\right]+2\left[\begin{array}{l}
1.875 \\
4.500
\end{array}\right]+\left[\begin{array}{l}
3 \\
6
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
1 \\
3
\end{array}\right]
\end{aligned}
$$

- So we have indeed hit target solution value $y_{1}(1)=1$

Example, continued

Multiple Shooting

- Simple shooting method inherits stability (or instability) of associated IVP, which may be unstable even when BVP is stable
- Such ill-conditioning may make it difficult to achieve convergence of iterative method for solving nonlinear equation
- Potential remedy is multiple shooting, in which interval $[a, b]$ is divided into subintervals, and shooting is carried out on each
- Requiring continuity at internal mesh points provides BC for individual subproblems
- Multiple shooting results in larger system of nonlinear equations to solve

Finite Difference Method

Finite Difference Method

- Finite difference method converts BVP into system of algebraic equations by replacing all derivatives with finite difference approximations
- For example, to solve two-point BVP

$$
u^{\prime \prime}=f\left(t, u, u^{\prime}\right), \quad a<t<b
$$

with $B C$

$$
u(a)=\alpha, \quad u(b)=\beta
$$

we introduce mesh points $t_{i}=a+i h, i=0,1, \ldots, n+1$, where $h=(b-a) /(n+1)$

- We already have $y_{0}=u(a)=\alpha$ and $y_{n+1}=u(b)=\beta$ from BC, and we seek approximate solution value $y_{i} \approx u\left(t_{i}\right)$ at each interior mesh point $t_{i}, i=1, \ldots, n$

Finite Difference Method, continued

- We replace derivatives by finite difference approximations such as

$$
\begin{aligned}
u^{\prime}\left(t_{i}\right) & \approx \frac{y_{i+1}-y_{i-1}}{2 h} \\
u^{\prime \prime}\left(t_{i}\right) & \approx \frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}
\end{aligned}
$$

- This yields system of equations

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}=f\left(t_{i}, y_{i}, \frac{y_{i+1}-y_{i-1}}{2 h}\right)
$$

to be solved for unknowns $y_{i}, i=1, \ldots, n$

- System of equations may be linear or nonlinear, depending on whether f is linear or nonlinear

Finite Difference Method, continued

- For these particular finite difference formulas, system to be solved is tridiagonal, which saves on both work and storage compared to general system of equations
- This is generally true of finite difference methods: they yield sparse systems because each equation involves few variables

Example: Finite Difference Method

- Consider again two-point BVP

$$
u^{\prime \prime}=6 t, \quad 0<t<1
$$

with $B C$

$$
u(0)=0, \quad u(1)=1
$$

- To keep computation to minimum, we compute approximate solution at one interior mesh point, $t=0.5$, in interval $[0,1]$
- Including boundary points, we have three mesh points, $t_{0}=0$, $t_{1}=0.5$, and $t_{2}=1$
- From BC, we know that $y_{0}=u\left(t_{0}\right)=0$ and $y_{2}=u\left(t_{2}\right)=1$, and we seek approximate solution $y_{1} \approx u\left(t_{1}\right)$

Example, continued

- Replacing derivatives by standard finite difference approximations at t_{1} gives equation

$$
\frac{y_{2}-2 y_{1}+y_{0}}{h^{2}}=f\left(t_{1}, y_{1}, \frac{y_{2}-y_{0}}{2 h}\right)
$$

- Substituting boundary data, mesh size, and right-hand side for this example we obtain

$$
\frac{1-2 y_{1}+0}{(0.5)^{2}}=6 t_{1}
$$

or

$$
4-8 y_{1}=6(0.5)=3
$$

so that

$$
y(0.5) \approx y_{1}=1 / 8=0.125
$$

Example, continued

- In a practical problem, much smaller step size and many more mesh points would be required to achieve acceptable accuracy
- We would therefore obtain system of equations to solve for approximate solution values at mesh points, rather than single equation as in this example

〈interactive example 〉

Collocation Method

Collocation Method

- Collocation method approximates solution to BVP by finite linear combination of basis functions
- For two-point BVP

$$
u^{\prime \prime}=f\left(t, u, u^{\prime}\right), \quad a<t<b
$$

with $B C$

$$
u(a)=\alpha, \quad u(b)=\beta
$$

we seek approximate solution of form

$$
u(t) \approx v(t, \boldsymbol{x})=\sum_{i=1}^{n} x_{i} \phi_{i}(t)
$$

where ϕ_{i} are basis functions defined on $[a, b]$ and \boldsymbol{x} is n-vector of parameters to be determined

Collocation Method

- Popular choices of basis functions include polynomials, B-splines, and trigonometric functions
- Basis functions with global support, such as polynomials or trigonometric functions, yield spectral method
- Basis functions with highly localized support, such as B-splines, yield finite element method

Collocation Method, continued

- To determine vector of parameters \boldsymbol{x}, define set of n collocation points, $a=t_{1}<\cdots<t_{n}=b$, at which approximate solution $v(t, \boldsymbol{x})$ is forced to satisfy ODE and boundary conditions
- Common choices of collocation points include equally-spaced points or Chebyshev points
- Suitably smooth basis functions can be differentiated analytically, so that approximate solution and its derivatives can be substituted into ODE and $B C$ to obtain system of algebraic equations for unknown parameters \boldsymbol{x}

Example: Collocation Method

- Consider again two-point BVP

$$
u^{\prime \prime}=6 t, \quad 0<t<1,
$$

with $B C$

$$
u(0)=0, \quad u(1)=1
$$

- To keep computation to minimum, we use one interior collocation point, $t=0.5$
- Including boundary points, we have three collocation points, $t_{0}=0$, $t_{1}=0.5$, and $t_{2}=1$, so we will be able to determine three parameters
- As basis functions we use first three monomials, so approximate solution has form

$$
v(t, \boldsymbol{x})=x_{1}+x_{2} t+x_{3} t^{2}
$$

Example, continued

- Derivatives of approximate solution function with respect to t are given by

$$
v^{\prime}(t, \boldsymbol{x})=x_{2}+2 x_{3} t, \quad v^{\prime \prime}(t, \boldsymbol{x})=2 x_{3}
$$

- Requiring ODE to be satisfied at interior collocation point $t_{2}=0.5$ gives equation

$$
v^{\prime \prime}\left(t_{2}, \boldsymbol{x}\right)=f\left(t_{2}, v\left(t_{2}, \boldsymbol{x}\right), v^{\prime}\left(t_{2}, \boldsymbol{x}\right)\right)
$$

or

$$
2 x_{3}=6 t_{2}=6(0.5)=3
$$

- Boundary condition at $t_{1}=0$ gives equation

$$
x_{1}+x_{2} t_{1}+x_{3} t_{1}^{2}=x_{1}=0
$$

- Boundary condition at $t_{3}=1$ gives equation

$$
x_{1}+x_{2} t_{3}+x_{3} t_{3}^{2}=x_{1}+x_{2}+x_{3}=1
$$

Example, continued

- Solving this system of three equations in three unknowns gives

$$
x_{1}=0, \quad x_{2}=-0.5, \quad x_{3}=1.5
$$

so approximate solution function is quadratic polynomial

$$
u(t) \approx v(t, \boldsymbol{x})=-0.5 t+1.5 t^{2}
$$

- At interior collocation point, $t_{2}=0.5$, we have approximate solution value

$$
u(0.5) \approx v(0.5, \boldsymbol{x})=0.125
$$

Example, continued

〈 interactive example 〉

Galerkin Method

Galerkin Method

- Rather than forcing residual to be zero at finite number of points, as in collocation, we could instead minimize residual over entire interval of integration
- For example, for Poisson equation in one dimension,

$$
u^{\prime \prime}=f(t), \quad a<t<b
$$

with homogeneous BC $u(a)=0, \quad u(b)=0$, subsitute approx solution $\quad u(t) \approx v(t, \boldsymbol{x})=\sum_{i=1}^{n} x_{i} \phi_{i}(t)$ into ODE and define residual

$$
r(t, \boldsymbol{x})=v^{\prime \prime}(t, \boldsymbol{x})-f(t)=\sum_{i=1}^{n} x_{i} \phi_{i}^{\prime \prime}(t)-f(t)
$$

Galerkin Method, continued

- Using least squares method, we can minimize

$$
F(\boldsymbol{x})=\frac{1}{2} \int_{a}^{b} r(t, \boldsymbol{x})^{2} d t
$$

by setting each component of its gradient to zero

- This yields symmetric system of linear algebraic equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where

$$
a_{i j}=\int_{a}^{b} \phi_{j}^{\prime \prime}(t) \phi_{i}^{\prime \prime}(t) d t, \quad b_{i}=\int_{a}^{b} f(t) \phi_{i}^{\prime \prime}(t) d t
$$

whose solution gives vector of parameters \boldsymbol{x}

Galerkin Method, continued

- More generally, weighted residual method forces residual to be orthogonal to each of set of weight functions or test functions w_{i},

$$
\int_{a}^{b} r(t, \boldsymbol{x}) w_{i}(t) d t=0, \quad i=1, \ldots, n
$$

- This yields linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, where now

$$
a_{i j}=\int_{a}^{b} \phi_{j}^{\prime \prime}(t) w_{i}(t) d t, \quad b_{i}=\int_{a}^{b} f(t) w_{i}(t) d t
$$

whose solution gives vector of parameters \boldsymbol{x}

Galerkin Method, continued

- Matrix resulting from weighted residual method is generally not symmetric, and its entries involve second derivatives of basis functions
- Both drawbacks are overcome by Galerkin method, in which weight functions are chosen to be same as basis functions, i.e., $w_{i}=\phi_{i}$, $i=1, \ldots, n$
- Orthogonality condition then becomes

$$
\int_{a}^{b} r(t, \boldsymbol{x}) \phi_{i}(t) d t=0, \quad i=1, \ldots, n
$$

or

$$
\int_{a}^{b} v^{\prime \prime}(t, \boldsymbol{x}) \phi_{i}(t) d t=\int_{a}^{b} f(t) \phi_{i}(t) d t, \quad i=1, \ldots, n
$$

Galerkin Method, continued

- Degree of differentiability required can be reduced using integration by parts, which gives

$$
\begin{aligned}
\int_{a}^{b} v^{\prime \prime}(t, \boldsymbol{x}) \phi_{i}(t) d t & =\left.v^{\prime}(t) \phi_{i}(t)\right|_{a} ^{b}-\int_{a}^{b} v^{\prime}(t) \phi_{i}^{\prime}(t) d t \\
& =v^{\prime}(b) \phi_{i}(b)-v^{\prime}(a) \phi_{i}(a)-\int_{a}^{b} v^{\prime}(t) \phi_{i}^{\prime}(t) d t
\end{aligned}
$$

- Assuming basis functions ϕ_{i} satisfy homogeneous boundary conditions, so $\phi_{i}(0)=\phi_{i}(1)=0$, orthogonality condition then becomes

$$
-\int_{a}^{b} v^{\prime}(t) \phi_{i}^{\prime}(t) d t=\int_{a}^{b} f(t) \phi_{i}(t) d t, \quad i=1, \ldots, n
$$

Galerkin Method, continued

- This yields system of linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, with

$$
a_{i j}=-\int_{a}^{b} \phi_{j}^{\prime}(t) \phi_{i}^{\prime}(t) d t, \quad b_{i}=\int_{a}^{b} f(t) \phi_{i}(t) d t
$$

whose solution gives vector of parameters \boldsymbol{x}

- \boldsymbol{A} is symmetric and involves only first derivatives of basis functions

Example: Galerkin Method

- Consider again two-point BVP

$$
u^{\prime \prime}=6 t, \quad 0<t<1
$$

with $\mathrm{BC} \quad u(0)=0, \quad u(1)=1$

- We will approximate solution by piecewise linear polynomial, for which B-splines of degree 1 ("hat" functions) form suitable set of basis functions

- To keep computation to minimum, we again use same three mesh points, but now they become knots in piecewise linear polynomial approximation

Example, continued

- Thus, we seek approximate solution of form

$$
u(t) \approx v(t, \boldsymbol{x})=x_{1} \phi_{1}(t)+x_{2} \phi_{2}(t)+x_{3} \phi_{3}(t)
$$

- From BC, we must have $x_{1}=0$ and $x_{3}=1$
- To determine remaining parameter x_{2}, we impose Galerkin orthogonality condition on interior basis function ϕ_{2} and obtain equation

$$
-\sum_{j=1}^{3}\left(\int_{0}^{1} \phi_{j}^{\prime}(t) \phi_{2}^{\prime}(t) d t\right) x_{j}=\int_{0}^{1} 6 t \phi_{2}(t) d t
$$

or, upon evaluating these simple integrals analytically

$$
2 x_{1}-4 x_{2}+2 x_{3}=3 / 2
$$

Example, continued

- Substituting known values for x_{1} and x_{3} then gives $x_{2}=1 / 8$ for remaining unknown parameter, so piecewise linear approximate solution is

$$
u(t) \approx v(t, \boldsymbol{x})=0.125 \phi_{2}(t)+\phi_{3}(t)
$$

- We note that $v(0.5, \boldsymbol{x})=0.125$

Example, continued

- More realistic problem would have many more interior mesh points and basis functions, and correspondingly many parameters to be determined
- Resulting system of equations would be much larger but still sparse, and therefore relatively easy to solve, provided local basis functions, such as "hat" functions, are used
- Resulting approximate solution function is less smooth than true solution, but nevertheless becomes more accurate as more mesh points are used

〈 interactive example 〉

Eigenvalue Problems

Eigenvalue Problems

- Standard eigenvalue problem for second-order ODE has form

$$
u^{\prime \prime}=\lambda f\left(t, u, u^{\prime}\right), \quad a<t<b
$$

with $B C$

$$
u(a)=\alpha, \quad u(b)=\beta
$$

where we seek not only solution u but also parameter λ

- Scalar λ (possibly complex) is eigenvalue and solution u is corresponding eigenfunction for this two-point BVP
- Discretization of eigenvalue problem for ODE results in algebraic eigenvalue problem whose solution approximates that of original problem

Example: Eigenvalue Problem

- Consider linear two-point BVP

$$
u^{\prime \prime}=\lambda g(t) u, \quad a<t<b
$$

with $B C$

$$
u(a)=0, \quad u(b)=0
$$

- Introduce discrete mesh points t_{i} in interval $[a, b]$, with mesh spacing h and use standard finite difference approximation for second derivative to obtain algebraic system

$$
\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}=\lambda g_{i} y_{i}, \quad i=1, \ldots, n
$$

where $y_{i}=u\left(t_{i}\right)$ and $g_{i}=g\left(t_{i}\right)$, and from BC $y_{0}=u(a)=0$ and $y_{n+1}=u(b)=0$

Example, continued

- Assuming $g_{i} \neq 0$, divide equation i by g_{i} for $i=1, \ldots, n$, to obtain linear system

$$
\boldsymbol{A} \boldsymbol{y}=\lambda \boldsymbol{y}
$$

where $n \times n$ matrix \boldsymbol{A} has tridiagonal form

$$
\boldsymbol{A}=\frac{1}{h^{2}}\left[\begin{array}{ccccc}
-2 / g_{1} & 1 / g_{1} & 0 & \cdots & 0 \\
1 / g_{2} & -2 / g_{2} & 1 / g_{2} & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & 1 / g_{n-1} & -2 / g_{n-1} & 1 / g_{n-1} \\
0 & \cdots & 0 & 1 / g_{n} & -2 / g_{n}
\end{array}\right]
$$

- This standard algebraic eigenvalue problem can be solved by methods discussed previously

Summary - ODE Boundary Value Problems

- Two-point BVP for ODE specifies BC at both endpoints of interval
- Shooting method replaces BVP by sequence of IVPs, with missing initial conditions determined by nonlinear equation solver
- Finite difference method replaces derivatives in ODE by finite differences defined on mesh of points, resulting in system of linear algebraic equations to solve for sample values of ODE solution
- Collocation method approximates ODE solution by linear combination of suitably smooth basis functions, with coefficients determined by requiring approximate solution to satisfy ODE at discrete set of collocation points
- Galerkin method approximates ODE solution by linear combination of basis functions, with coefficients determined by requiring residual to be orthogonal to each basis function

[^0]: ${ }^{\dagger}$ Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright © 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

