CS 450 - Numerical Analysis

Chapter 7: Interpolation ${ }^{\dagger}$

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign
heath@illinois.edu
January 28, 2019

[^0]
Interpolation

Interpolation

- Basic interpolation problem: for given data

$$
\left(t_{1}, y_{1}\right),\left(t_{2}, y_{2}\right), \ldots\left(t_{m}, y_{m}\right) \text { with } t_{1}<t_{2}<\cdots<t_{m}
$$

determine function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(t_{i}\right)=y_{i}, \quad i=1, \ldots, m
$$

- f is interpolating function, or interpolant, for given data
- Additional data might be prescribed, such as slope of interpolant at given points
- Additional constraints might be imposed, such as smoothness, monotonicity, or convexity of interpolant
- f could be function of more than one variable, but we will consider only one-dimensional case

Purposes for Interpolation

- Plotting smooth curve through discrete data points
- Reading between lines of table
- Differentiating or integrating tabular data
- Quick and easy evaluation of mathematical function
- Replacing complicated function by simple one

Interpolation vs Approximation

- By definition, interpolating function fits given data points exactly
- Interpolation is inappropriate if data points subject to significant errors
- It is usually preferable to smooth noisy data, for example by least squares approximation
- Approximation is also more appropriate for special function libraries

Issues in Interpolation

Arbitrarily many functions interpolate given set of data points

- What form should interpolating function have?
- How should interpolant behave between data points?
- Should interpolant inherit properties of data, such as monotonicity, convexity, or periodicity?
- Are parameters that define interpolating function meaningful?
- If function and data are plotted, should results be visually pleasing?

Choosing Interpolant

Choice of function for interpolation based on

- How easy interpolating function is to work with
- determining its parameters
- evaluating interpolant
- differentiating or integrating interpolant
- How well properties of interpolant match properties of data to be fit (smoothness, monotonicity, convexity, periodicity, etc.)

Functions for Interpolation

- Families of functions commonly used for interpolation include
- Polynomials
- Piecewise polynomials
- Trigonometric functions
- Exponential functions
- Rational functions
- For now we will focus on interpolation by polynomials and piecewise polynomials
- We will consider trigonometric interpolation (DFT) later

Basis Functions

- Family of functions for interpolating given data points is spanned by set of basis functions $\phi_{1}(t), \ldots, \phi_{n}(t)$
- Interpolating function f is chosen as linear combination of basis functions,

$$
f(t)=\sum_{j=1}^{n} x_{j} \phi_{j}(t)
$$

- Requiring f to interpolate data $\left(t_{i}, y_{i}\right)$ means

$$
f\left(t_{i}\right)=\sum_{j=1}^{n} x_{j} \phi_{j}\left(t_{i}\right)=y_{i}, \quad i=1, \ldots, m
$$

which is system of linear equations $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$ for n-vector \boldsymbol{x} of parameters x_{j}, where entries of $m \times n$ matrix \boldsymbol{A} are given by $a_{i j}=\phi_{j}\left(t_{i}\right)$

Existence, Uniqueness, and Conditioning

- Existence and uniqueness of interpolant depend on number of data points m and number of basis functions n
- If $m>n$, interpolant usually doesn't exist
- If $m<n$, interpolant is not unique
- If $m=n$, then basis matrix \boldsymbol{A} is nonsingular provided data points t_{i} are distinct, so data can be fit exactly
- Sensitivity of parameters \boldsymbol{x} to perturbations in data depends on cond (\boldsymbol{A}), which depends in turn on choice of basis functions

Polynomial Interpolation

Polynomial Interpolation

- Simplest and most common type of interpolation uses polynomials
- Unique polynomial of degree at most $n-1$ passes through n data points $\left(t_{i}, y_{i}\right), i=1, \ldots, n$, where t_{i} are distinct
- There are many ways to represent or compute interpolating polynomial, but in theory all must give same result

〈interactive example 〉

Monomial Basis

- Monomial basis functions

$$
\phi_{j}(t)=t^{j-1}, \quad j=1, \ldots, n
$$

give interpolating polynomial of form

$$
p_{n-1}(t)=x_{1}+x_{2} t+\cdots+x_{n} t^{n-1}
$$

with coefficients \boldsymbol{x} given by $n \times n$ linear system

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{cccc}
1 & t_{1} & \cdots & t_{1}^{n-1} \\
1 & t_{2} & \cdots & t_{2}^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & t_{n} & \cdots & t_{n}^{n-1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\boldsymbol{y}
$$

- Matrix of this form is called Vandermonde matrix

Example: Monomial Basis

- Determine polynomial of degree two interpolating three data points $(-2,-27),(0,-1),(1,0)$
- Using monomial basis, linear system is

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{lll}
1 & t_{1} & t_{1}^{2} \\
1 & t_{2} & t_{2}^{2} \\
1 & t_{3} & t_{3}^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\boldsymbol{y}
$$

- For these particular data, system is

$$
\left[\begin{array}{rrr}
1 & -2 & 4 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-27 \\
-1 \\
0
\end{array}\right]
$$

whose solution is $x=\left[\begin{array}{lll}-1 & 5 & -4\end{array}\right]^{T}$, so interpolating polynomial is

$$
p_{2}(t)=-1+5 t-4 t^{2}
$$

Monomial Basis, continued

Monomial Basis, continued

- For monomial basis, matrix \boldsymbol{A} is increasingly ill-conditioned as degree increases
- III-conditioning does not prevent fitting data points well, since residual for linear system solution will be small
- But it does mean that values of coefficients are poorly determined
- Solving system $\boldsymbol{A x}=\boldsymbol{y}$ using standard linear equation solver to determine coefficients \boldsymbol{x} of interpolating polynomial requires $\mathcal{O}\left(n^{3}\right)$ work
- Both conditioning of linear system and amount of computational work required to solve it can be improved by using different basis
- Change of basis still gives same interpolating polynomial for given data, but representation of polynomial will be different

Monomial Basis, continued

- Conditioning with monomial basis can be improved by shifting and scaling independent variable t

$$
\phi_{j}(t)=\left(\frac{t-c}{d}\right)^{j-1}
$$

where, $c=\left(t_{1}+t_{n}\right) / 2$ is midpoint and $d=\left(t_{n}-t_{1}\right) / 2$ is half of range of data

- New independent variable lies in interval $[-1,1]$, which also helps avoid overflow or harmful underflow
- Even with optimal shifting and scaling, monomial basis usually is still poorly conditioned, and we must seek better alternatives

Evaluating Polynomials

- When represented in monomial basis, polynomial

$$
p_{n-1}(t)=x_{1}+x_{2} t+\cdots+x_{n} t^{n-1}
$$

can be evaluated efficiently using Horner's nested evaluation scheme

$$
p_{n-1}(t)=x_{1}+t\left(x_{2}+t\left(x_{3}+t\left(\cdots\left(x_{n-1}+t x_{n}\right) \cdots\right)\right)\right)
$$

which requires only n additions and n multiplications

- For example,

$$
1-4 t+5 t^{2}-2 t^{3}+3 t^{4}=1+t(-4+t(5+t(-2+3 t)))
$$

- Other manipulations of interpolating polynomial, such as differentiation or integration, are also relatively easy with monomial basis representation

Lagrange and Newton Interpolation

Lagrange Interpolation

- For given set of data points $\left(t_{i}, y_{i}\right), i=1, \ldots, n$, let

$$
\ell(t)=\prod_{k=1}^{n}\left(t-t_{k}\right)=\left(t-t_{1}\right)\left(t-t_{2}\right) \cdots\left(t-t_{n}\right)
$$

- Define barycentric weights

$$
w_{j}=\frac{1}{\ell^{\prime}\left(t_{j}\right)}=\frac{1}{\prod_{k=1, k \neq j}^{n}\left(t_{j}-t_{k}\right)}, \quad j=1, \ldots, n
$$

- Lagrange basis functions are then given by

$$
\ell_{j}(t)=\ell(t) \frac{w_{j}}{t-t_{j}}, \quad j=1, \ldots, n
$$

- From definition, $\ell_{j}(t)$ is polynomial of degree $n-1$

Lagrange Interpolation, continued

- Assuming common factor $\left(t_{j}-t_{j}\right)$ in $\ell\left(t_{j}\right) /\left(t_{j}-t_{j}\right)$ is canceled to avoid division by zero when evaluating $\ell_{j}\left(t_{j}\right)$, then

$$
\ell_{j}\left(t_{i}\right)=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}, \quad i, j=1, \ldots, n\right.
$$

- Matrix of linear system $\boldsymbol{A x}=\boldsymbol{y}$ is identity matrix I
- Coefficients \boldsymbol{x} for Lagrange basis functions are just data values \boldsymbol{y}
- Polynomial of degree $n-1$ interpolating data points $\left(t_{i}, y_{i}\right)$, $i=1, \ldots, n$, is given by

$$
p_{n-1}(t)=\sum_{j=1}^{n} y_{j} \ell_{j}(t)=\sum_{j=1}^{n} y_{j} \ell(t) \frac{w_{j}}{t-t_{j}}=\ell(t) \sum_{j=1}^{n} y_{j} \frac{w_{j}}{t-t_{j}}
$$

Lagrange Interpolation, continued

- Once weights w_{j} have been computed, which requires $\mathcal{O}\left(n^{2}\right)$ arithmetic operations, then interpolating polynomial can be evaluated for any given argument in $\mathcal{O}(n)$ arithmetic operations
- In this barycentric form, Lagrange polynomial interpolant is relatively easy to differentiate or integrate
- If new data point $\left(t_{n+1}, y_{n+1}\right)$ is added, then interpolating polynomial can be updated in $\mathcal{O}(n)$ arithmetic operations
- Divide each w_{j} by $\left(t_{j}-t_{n+1}\right), j=1, \ldots, n$
- Compute new weight w_{n+1} using usual formula

Lagrange Basis Functions

Example: Lagrange Interpolation

- Use Lagrange interpolation to determine interpolating polynomial for three data points $(-2,-27),(0,-1),(1,0)$
- Substituting these data, we obtain

$$
\ell(t)=\left(t-t_{1}\right)\left(t-t_{2}\right)\left(t-t_{3}\right)=(t+2) t(t-1)
$$

- Weights are given by

$$
\begin{aligned}
& w_{1}=\frac{1}{\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)}=\frac{1}{(-2)(-3)}=\frac{1}{6} \\
& w_{2}=\frac{1}{\left(t_{2}-t_{1}\right)\left(t_{2}-t_{3}\right)}=\frac{1}{2(-1)}=-\frac{1}{2} \\
& w_{3}=\frac{1}{\left(t_{3}-t_{1}\right)\left(t_{3}-t_{2}\right)}=\frac{1}{3 \cdot 1}=\frac{1}{3}
\end{aligned}
$$

- Interpolating quadratic polynomial is given by

$$
p_{2}(t)=(t+2) t(t-1)\left(-27 \frac{1 / 6}{t+2}-1 \frac{-1 / 2}{t}+0 \frac{1 / 3}{t-1}\right)
$$

Newton Interpolation

- For given set of data points $\left(t_{i}, y_{i}\right), i=1, \ldots, n$, Newton basis functions are defined by

$$
\pi_{j}(t)=\prod_{k=1}^{j-1}\left(t-t_{k}\right), \quad j=1, \ldots, n
$$

where value of product is taken to be 1 when limits make it vacuous

- Newton interpolating polynomial has form

$$
\begin{aligned}
p_{n-1}(t)= & x_{1}+x_{2}\left(t-t_{1}\right)+x_{3}\left(t-t_{1}\right)\left(t-t_{2}\right)+ \\
& \cdots+x_{n}\left(t-t_{1}\right)\left(t-t_{2}\right) \cdots\left(t-t_{n-1}\right)
\end{aligned}
$$

- For $i<j, \pi_{j}\left(t_{i}\right)=0$, so basis matrix \boldsymbol{A} is lower triangular, where $a_{i j}=\pi_{j}\left(t_{i}\right)$

Newton Basis Functions

〈interactive example 〉

Newton Interpolation, continued

- Solution \boldsymbol{x} to triangular system $\boldsymbol{A x}=\boldsymbol{y}$ can be computed by forward-substitution in $\mathcal{O}\left(n^{2}\right)$ arithmetic operations
- Resulting interpolant can be evaluated in $\mathcal{O}(n)$ operations for any argument using nested evaluation scheme similar to Horner's method

Example: Newton Interpolation

- Use Newton interpolation to determine interpolating polynomial for three data points $(-2,-27),(0,-1),(1,0)$
- Using Newton basis, linear system is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & t_{2}-t_{1} & 0 \\
1 & t_{3}-t_{1} & \left(t_{3}-t_{1}\right)\left(t_{3}-t_{2}\right)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

- For these particular data, system is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 0 \\
1 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-27 \\
-1 \\
0
\end{array}\right]
$$

whose solution by forward substitution is $x=\left[\begin{array}{lll}-27 & 13 & -4\end{array}\right]^{T}$, so interpolating polynomial is

$$
p(t)=-27+13(t+2)-4(t+2) t
$$

Updating Newton Interpolant

- If $p_{j}(t)$ is polynomial of degree $j-1$ interpolating j given points, then for any constant x_{j+1},

$$
p_{j+1}(t)=p_{j}(t)+x_{j+1} \pi_{j+1}(t)
$$

is polynomial of degree j that also interpolates same j points

- Free parameter x_{j+1} can then be chosen so that $p_{j+1}(t)$ interpolates y_{j+1},

$$
x_{j+1}=\frac{y_{j+1}-p_{j}\left(t_{j+1}\right)}{\pi_{j+1}\left(t_{j+1}\right)}
$$

- Newton interpolation begins with constant polynomial $p_{1}(t)=y_{1}$ interpolating first data point and then successively incorporates each remaining data point into interpolant

Divided Differences

- Given data points $\left(t_{i}, y_{i}\right), i=1, \ldots, n$, divided differences, denoted by $f[$], are defined recursively by

$$
f\left[t_{1}, t_{2}, \ldots, t_{k}\right]=\frac{f\left[t_{2}, t_{3}, \ldots, t_{k}\right]-f\left[t_{1}, t_{2}, \ldots, t_{k-1}\right]}{t_{k}-t_{1}}
$$

where recursion begins with $f\left[t_{k}\right]=y_{k}, k=1, \ldots, n$

- Coefficient of j th basis function in Newton interpolant is given by

$$
x_{j}=f\left[t_{1}, t_{2}, \ldots, t_{j}\right]
$$

- Recursion requires $\mathcal{O}\left(n^{2}\right)$ arithmetic operations to compute coefficients of Newton interpolant, but is less prone to overflow or underflow than direct formation of triangular Newton basis matrix

Orthogonal Polynomials

Orthogonal Polynomials

- Inner product can be defined on space of polynomials on interval [a, b] by taking

$$
\langle p, q\rangle=\int_{a}^{b} p(t) q(t) w(t) d t
$$

where $w(t)$ is nonnegative weight function

- Two polynomials p and q are orthogonal if $\langle p, q\rangle=0$
- Set of polynomials $\left\{p_{i}\right\}$ is orthonormal if

$$
\left\langle p_{i}, p_{j}\right\rangle= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

- Given set of polynomials, Gram-Schmidt orthogonalization can be used to generate orthonormal set spanning same space

Orthogonal Polynomials, continued

- For example, with inner product given by weight function $w(t) \equiv 1$ on interval $[-1,1]$, applying Gram-Schmidt process to set of monomials $1, t, t^{2}, t^{3}, \ldots$ yields Legendre polynomials

$$
\begin{gathered}
1, \quad t, \quad\left(3 t^{2}-1\right) / 2, \quad\left(5 t^{3}-3 t\right) / 2, \quad\left(35 t^{4}-30 t^{2}+3\right) / 8 \\
\left(63 t^{5}-70 t^{3}+15 t\right) / 8, \ldots
\end{gathered}
$$

first n of which form an orthogonal basis for space of polynomials of degree at most $n-1$

- Other choices of weight functions and intervals yield other orthogonal polynomials, such as Chebyshev, Jacobi, Laguerre, and Hermite

Orthogonal Polynomials, continued

- Orthogonal polynomials have many useful properties
- They satisfy three-term recurrence relation of form

$$
p_{k+1}(t)=\left(\alpha_{k} t+\beta_{k}\right) p_{k}(t)-\gamma_{k} p_{k-1}(t)
$$

which makes them very efficient to generate and evaluate

- Orthogonality makes them very natural for least squares approximation, and they are also useful for generating Gaussian quadrature rules, which we will see later

Chebyshev Polynomials

- k th Chebyshev polynomial of first kind, defined on interval $[-1,1]$ by

$$
T_{k}(t)=\cos (k \arccos (t))
$$

are orthogonal with respect to weight function $\left(1-t^{2}\right)^{-1 / 2}$

- First few Chebyshev polynomials are given by

$$
1, \quad t, \quad 2 t^{2}-1, \quad 4 t^{3}-3 t, \quad 8 t^{4}-8 t^{2}+1, \quad 16 t^{5}-20 t^{3}+5 t, \quad \ldots
$$

- Equi-oscillation property: successive extrema of T_{k} are equal in magnitude and alternate in sign, which distributes error uniformly when approximating arbitrary continuous function

Chebyshev Basis Functions

Chebyshev Points

- Chebyshev points are zeros of T_{k}, given by

$$
t_{i}=\cos \left(\frac{(2 i-1) \pi}{2 k}\right), \quad i=1, \ldots, k
$$

or extrema of T_{k}, given by

$$
t_{i}=\cos \left(\frac{i \pi}{k}\right), \quad i=0,1, \ldots, k
$$

- Chebyshev points are abscissas of points equally spaced around unit circle in \mathbb{R}^{2}

- Chebyshev points have attractive properties for interpolation and other problems

Convergence

Interpolating Continuous Functions

- If data points are discrete sample of continuous function, how well does interpolant approximate that function between sample points?
- If f is smooth function, and p_{n-1} is polynomial of degree at most $n-1$ interpolating f at n points t_{1}, \ldots, t_{n}, then

$$
f(t)-p_{n-1}(t)=\frac{f^{(n)}(\theta)}{n!}\left(t-t_{1}\right)\left(t-t_{2}\right) \cdots\left(t-t_{n}\right)
$$

where θ is some (unknown) point in interval $\left[t_{1}, t_{n}\right]$

- Since point θ is unknown, this result is not particularly useful unless bound on appropriate derivative of f is known

Interpolating Continuous Functions, continued

- If $\left|f^{(n)}(t)\right| \leq M$ for all $t \in\left[t_{1}, t_{n}\right]$, and $h=\max \left\{t_{i+1}-t_{i}: i=1, \ldots, n-1\right\}$, then

$$
\max _{t \in\left[t_{1}, t_{n}\right]}\left|f(t)-p_{n-1}(t)\right| \leq \frac{M h^{n}}{4 n}
$$

- Error diminishes with increasing n and decreasing h, but only if $\left|f^{(n)}(t)\right|$ does not grow too rapidly with n

High-Degree Polynomial Interpolation

- Interpolating polynomials of high degree are expensive to determine and evaluate
- In some bases, coefficients of polynomial may be poorly determined due to ill-conditioning of linear system to be solved
- High-degree polynomial necessarily has lots of "wiggles," which may bear no relation to data to be fit
- Polynomial passes through required data points, but it may oscillate wildly between data points

Convergence

- Polynomial interpolating continuous function may not converge to function as number of data points and polynomial degree increases
- Equally spaced interpolation points often yield unsatisfactory results near ends of interval
- If points are bunched near ends of interval, more satisfactory results are likely to be obtained with polynomial interpolation
- Use of Chebyshev points distributes error evenly and yields convergence throughout interval for any sufficiently smooth function

Example: Runge's Function

- Polynomial interpolants of Runge's function at equally spaced points do not converge

〈 interactive example 〉

Example: Runge's Function

- Polynomial interpolants of Runge's function at Chebyshev points do converge

Taylor Polynomial

- Another useful form of polynomial interpolation for smooth function f is polynomial given by truncated Taylor series

$$
p_{n}(t)=f(a)+f^{\prime}(a)(t-a)+\frac{f^{\prime \prime}(a)}{2}(t-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(t-a)^{n}
$$

- Polynomial interpolates f in that values of p_{n} and its first n derivatives match those of f and its first n derivatives evaluated at $t=a$, so $p_{n}(t)$ is good approximation to $f(t)$ for t near a
- We have already seen examples in Newton's method for nonlinear equations and optimization

Piecewise Polynomial Interpolation

Piecewise Polynomial Interpolation

- Fitting single polynomial to large number of data points is likely to yield unsatisfactory oscillating behavior in interpolant
- Piecewise polynomials provide alternative to practical and theoretical difficulties with high-degree polynomial interpolation
- Main advantage of piecewise polynomial interpolation is that large number of data points can be fit with low-degree polynomials
- In piecewise interpolation of given data points $\left(t_{i}, y_{i}\right)$, different function is used in each subinterval $\left[t_{i}, t_{i+1}\right]$
- Abscissas t_{i} are called knots or breakpoints, at which interpolant changes from one function to another

Piecewise Interpolation, continued

- Simplest example is piecewise linear interpolation, in which successive pairs of data points are connected by straight lines
- Although piecewise interpolation eliminates excessive oscillation and nonconvergence, it appears to sacrifice smoothness of interpolating function
- We have many degrees of freedom in choosing piecewise polynomial interpolant, however, which can be exploited to obtain smooth interpolating function despite its piecewise nature

Hermite Interpolation

- In Hermite interpolation, derivatives as well as values of interpolating function are taken into account
- Including derivative values adds more equations to linear system that determines parameters of interpolating function
- To have unique solution, number of equations must equal number of parameters to be determined
- Piecewise cubic polynomials are typical choice for Hermite interpolation, providing flexibility, simplicity, and efficiency

Hermite Cubic Interpolation

- Hermite cubic interpolant is piecewise cubic polynomial interpolant with continuous first derivative
- Piecewise cubic polynomial with n knots has $4(n-1)$ parameters to be determined
- Requiring that it interpolate given data gives $2(n-1)$ equations
- Requiring that it have one continuous derivative gives $n-2$ additional equations, or total of $3 n-4$, which still leaves n free parameters
- Thus, Hermite cubic interpolant is not unique, and remaining free parameters can be chosen so that result satisfies additional constraints

Cubic Spline Interpolation

- Spline is piecewise polynomial of degree k that is $k-1$ times continuously differentiable
- For example, linear spline is of degree 1 and has 0 continuous derivatives, i.e., it is continuous, but not smooth, and could be described as "broken line"
- Cubic spline is piecewise cubic polynomial that is twice continuously differentiable
- As with Hermite cubic, interpolating given data and requiring one continuous derivative imposes $3 n-4$ constraints on cubic spline
- Requiring continuous second derivative imposes $n-2$ additional constraints, leaving 2 remaining free parameters

Cubic Splines, continued

Final two parameters can be fixed in various ways

- Specify first derivative at endpoints t_{1} and t_{n}
- Force second derivative to be zero at endpoints, which gives natural spline
- Enforce "not-a-knot" condition, which forces two consecutive cubic pieces to be same
- Force first derivatives, as well as second derivatives, to match at endpoints t_{1} and t_{n} (if spline is to be periodic)

Example: Cubic Spline Interpolation

- Determine natural cubic spline interpolating three data points $\left(t_{i}, y_{i}\right), i=1,2,3$
- Required interpolant is piecewise cubic function defined by separate cubic polynomials in each of two intervals $\left[t_{1}, t_{2}\right]$ and $\left[t_{2}, t_{3}\right]$
- Denote these two polynomials by

$$
\begin{aligned}
& p_{1}(t)=\alpha_{1}+\alpha_{2} t+\alpha_{3} t^{2}+\alpha_{4} t^{3} \\
& p_{2}(t)=\beta_{1}+\beta_{2} t+\beta_{3} t^{2}+\beta_{4} t^{3}
\end{aligned}
$$

- Eight parameters are to be determined, so we need eight equations

Example, continued

- Requiring first cubic to interpolate data at end points of first interval $\left[t_{1}, t_{2}\right]$ gives two equations

$$
\begin{aligned}
& \alpha_{1}+\alpha_{2} t_{1}+\alpha_{3} t_{1}^{2}+\alpha_{4} t_{1}^{3}=y_{1} \\
& \alpha_{1}+\alpha_{2} t_{2}+\alpha_{3} t_{2}^{2}+\alpha_{4} t_{2}^{3}=y_{2}
\end{aligned}
$$

- Requiring second cubic to interpolate data at end points of second interval $\left[t_{2}, t_{3}\right]$ gives two equations

$$
\begin{aligned}
& \beta_{1}+\beta_{2} t_{2}+\beta_{3} t_{2}^{2}+\beta_{4} t_{2}^{3}=y_{2} \\
& \beta_{1}+\beta_{2} t_{3}+\beta_{3} t_{3}^{2}+\beta_{4} t_{3}^{3}=y_{3}
\end{aligned}
$$

- Requiring first derivative of interpolant to be continuous at t_{2} gives equation

$$
\alpha_{2}+2 \alpha_{3} t_{2}+3 \alpha_{4} t_{2}^{2}=\beta_{2}+2 \beta_{3} t_{2}+3 \beta_{4} t_{2}^{2}
$$

Example, continued

- Requiring second derivative of interpolant function to be continuous at t_{2} gives equation

$$
2 \alpha_{3}+6 \alpha_{4} t_{2}=2 \beta_{3}+6 \beta_{4} t_{2}
$$

- Finally, by definition natural spline has second derivative equal to zero at endpoints, which gives two equations

$$
\begin{aligned}
& 2 \alpha_{3}+6 \alpha_{4} t_{1}=0 \\
& 2 \beta_{3}+6 \beta_{4} t_{3}=0
\end{aligned}
$$

- When particular data values are substituted for t_{i} and y_{i}, system of eight linear equations can be solved for eight unknown parameters α_{i} and β_{i}

Hermite Cubic vs Spline Interpolation

- Choice between Hermite cubic and spline interpolation depends on data to be fit and on purpose for doing interpolation
- If smoothness is of paramount importance, then spline interpolation may be most appropriate
- But Hermite cubic interpolant may have more pleasing visual appearance and allows flexibility to preserve monotonicity if original data are monotonic
- In any case, it is advisable to plot interpolant and data to help assess how well interpolating function captures behavior of original data

Hermite Cubic vs Spline Interpolation

B-splines

B-splines

- B-splines form basis for family of spline functions of given degree
- B-splines can be defined in various ways, including recursion (which we will use), convolution, and divided differences
- Although in practice we use only finite set of knots t_{1}, \ldots, t_{n}, for notational convenience we will assume infinite set of knots

$$
\cdots<t_{-2}<t_{-1}<t_{0}<t_{1}<t_{2}<\cdots
$$

Additional knots can be taken as arbitrarily defined points outside interval $\left[t_{1}, t_{n}\right.$]

- We will also use linear functions

$$
v_{i}^{k}(t)=\left(t-t_{i}\right) /\left(t_{i+k}-t_{i}\right)
$$

B-splines, continued

- To start recursion, define B-splines of degree 0 by

$$
B_{i}^{0}(t)= \begin{cases}1 & \text { if } t_{i} \leq t<t_{i+1} \\ 0 & \text { otherwise }\end{cases}
$$

and then for $k>0$ define B -splines of degree k by

$$
B_{i}^{k}(t)=v_{i}^{k}(t) B_{i}^{k-1}(t)+\left(1-v_{i+1}^{k}(t)\right) B_{i+1}^{k-1}(t)
$$

- Since B_{i}^{0} is piecewise constant and v_{i}^{k} is linear, B_{i}^{1} is piecewise linear
- Similarly, B_{i}^{2} is in turn piecewise quadratic, and in general, B_{i}^{k} is piecewise polynomial of degree k

B-splines, continued

〈interactive example 〉

B-splines, continued

Important properties of B -spline functions B_{i}^{k}

1. For $t<t_{i}$ or $t>t_{i+k+1}, \quad B_{i}^{k}(t)=0$
2. For $t_{i}<t<t_{i+k+1}, \quad B_{i}^{k}(t)>0$
3. For all $t, \quad \sum_{i=-\infty}^{\infty} B_{i}^{k}(t)=1$
4. For $k \geq 1, B_{i}^{k}$ has $k-1$ continuous derivatives
5. Set of functions $\left\{B_{1-k}^{k}, \ldots, B_{n-1}^{k}\right\}$ is linearly independent on interval [t_{1}, t_{n}] and spans space of all splines of degree k having knots t_{i}

B-splines, continued

- Properties 1 and 2 together say that B-spline functions have local support
- Property 3 gives normalization
- Property 4 says that they are indeed splines
- Property 5 says that for given k, these functions form basis for set of all splines of degree k

B-splines, continued

- If we use B-spline basis, linear system to be solved for spline coefficients will be nonsingular and banded
- Use of B-spline basis yields efficient and stable methods for determining and evaluating spline interpolants, and many library routines for spline interpolation are based on this approach
- B-splines are also useful in many other contexts, such as numerical solution of differential equations, as we will see later

Summary - Interpolation

- Interpolating function fits given data points exactly, which is not appropriate if data are noisy
- Interpolating function given by linear combination of basis functions, whose coefficients are to be determined
- Existence and uniqueness of interpolant depend on whether number of parameters to be determined matches number of data points to be fit
- Polynomial interpolation can use monomial, Lagrange, or Newton bases, with corresponding tradeoffs in cost of determining and manipulating resulting interpolant

Summary - Interpolation, continued

- Convergence of interpolating polynomials to underlying continuous function depends on location of sample points
- Piecewise polynomial (e.g., spline) interpolation can fit large number of data points with low-degree polynomials
- Cubic spline interpolation is excellent choice when smoothness is important
- Hermite cubics offer greater flexibility to retain properties of underlying data, such as monotonicity

[^0]: ${ }^{\dagger}$ Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright © 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

