CS 450 – Numerical Analysis

Chapter 7: Interpolation †

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign
heath@illinois.edu

January 28, 2019

Interpolation
Interpolation

- Basic interpolation problem: for given data

\[(t_1, y_1), (t_2, y_2), \ldots, (t_m, y_m) \] with \(t_1 < t_2 < \cdots < t_m \)

determine function \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that

\[f(t_i) = y_i, \quad i = 1, \ldots, m \]

- \(f \) is *interpolating function*, or *interpolant*, for given data

- Additional data might be prescribed, such as slope of interpolant at given points

- Additional constraints might be imposed, such as smoothness, monotonicity, or convexity of interpolant

- \(f \) could be function of more than one variable, but we will consider only one-dimensional case
Purposes for Interpolation

- Plotting smooth curve through discrete data points
- Reading between lines of table
- Differentiating or integrating tabular data
- Quick and easy evaluation of mathematical function
- Replacing complicated function by simple one
Interpolation vs Approximation

- By definition, interpolating function fits given data points exactly.

- Interpolation is inappropriate if data points subject to significant errors.

- It is usually preferable to smooth noisy data, for example by least squares approximation.

- Approximation is also more appropriate for special function libraries.
Issues in Interpolation

Arbitrarily many functions interpolate given set of data points

- What form should interpolating function have?
- How should interpolant behave between data points?
- Should interpolant inherit properties of data, such as monotonicity, convexity, or periodicity?
- Are parameters that define interpolating function meaningful?
- If function and data are plotted, should results be visually pleasing?
Choosing Interpolant

Choice of function for interpolation based on

- How easy interpolating function is to work with
 - determining its parameters
 - evaluating interpolant
 - differentiating or integrating interpolant

- How well properties of interpolant match properties of data to be fit (smoothness, monotonicity, convexity, periodicity, etc.)
Functions for Interpolation

- Families of functions commonly used for interpolation include
 - Polynomials
 - Piecewise polynomials
 - Trigonometric functions
 - Exponential functions
 - Rational functions

- For now we will focus on interpolation by polynomials and piecewise polynomials

- We will consider trigonometric interpolation (DFT) later
Basis Functions

- Family of functions for interpolating given data points is spanned by set of \textit{basis functions} $\phi_1(t), \ldots, \phi_n(t)$

- Interpolating function f is chosen as linear combination of basis functions,

$$f(t) = \sum_{j=1}^{n} x_j \phi_j(t)$$

- Requiring f to interpolate data (t_i, y_i) means

$$f(t_i) = \sum_{j=1}^{n} x_j \phi_j(t_i) = y_i, \quad i = 1, \ldots, m$$

which is system of linear equations $A \mathbf{x} = \mathbf{y}$ for n-vector \mathbf{x} of parameters x_j, where entries of $m \times n$ matrix A are given by $a_{ij} = \phi_j(t_i)$
Existence, Uniqueness, and Conditioning

- Existence and uniqueness of interpolant depend on number of data points m and number of basis functions n

- If $m > n$, interpolant usually doesn’t exist

- If $m < n$, interpolant is not unique

- If $m = n$, then basis matrix A is nonsingular provided data points t_i are distinct, so data can be fit exactly

- Sensitivity of parameters x to perturbations in data depends on $\text{cond}(A)$, which depends in turn on choice of basis functions
Polynomial Interpolation
Polynomial Interpolation

- Simplest and most common type of interpolation uses polynomials.
- Unique polynomial of degree at most $n - 1$ passes through n data points $(t_i, y_i), i = 1, \ldots, n$, where t_i are distinct.
- There are many ways to represent or compute interpolating polynomial, but in theory all must give same result.

⟨ interactive example ⟩
Monomial Basis

- **Monomial basis functions**

\[\phi_j(t) = t^{j-1}, \quad j = 1, \ldots, n \]

give interpolating polynomial of form

\[p_{n-1}(t) = x_1 + x_2 t + \cdots + x_n t^{n-1} \]

with coefficients \(x \) given by \(n \times n \) linear system

\[
A x = \begin{bmatrix}
1 & t_1 & \cdots & t_1^{n-1} \\
1 & t_2 & \cdots & t_2^{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & t_n & \cdots & t_n^{n-1}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
= \begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}
= y
\]

- Matrix of this form is called **Vandermonde matrix**
Example: Monomial Basis

- Determine polynomial of degree two interpolating three data points \((-2, -27), (0, -1), (1, 0)\)

- Using monomial basis, linear system is

\[
Ax = \begin{bmatrix}
1 & t_1 & t_1^2 \\
1 & t_2 & t_2^2 \\
1 & t_3 & t_3^2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix} = y
\]

- For these particular data, system is

\[
\begin{bmatrix}
1 & -2 & 4 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
-27 \\
-1 \\
0
\end{bmatrix}
\]

whose solution is \(x = [-1 \ 5 \ -4]^T\), so interpolating polynomial is

\[
p_2(t) = -1 + 5t - 4t^2
\]
Monomial Basis, continued

⟨ interactive example ⟩
Monomial Basis, continued

- For monomial basis, matrix A is increasingly ill-conditioned as degree increases.

- Ill-conditioning does not prevent fitting data points well, since residual for linear system solution will be small.

- But it does mean that values of coefficients are poorly determined.

- Solving system $Ax = y$ using standard linear equation solver to determine coefficients x of interpolating polynomial requires $O(n^3)$ work.

- Both conditioning of linear system and amount of computational work required to solve it can be improved by using different basis.

- Change of basis still gives same interpolating polynomial for given data, but representation of polynomial will be different.
Monomial Basis, continued

- Conditioning with monomial basis can be improved by shifting and scaling independent variable t

$$\phi_j(t) = \left(\frac{t - c}{d}\right)^{j-1}$$

where, $c = (t_1 + t_n)/2$ is midpoint and $d = (t_n - t_1)/2$ is half of range of data

- New independent variable lies in interval $[-1, 1]$, which also helps avoid overflow or harmful underflow

- Even with optimal shifting and scaling, monomial basis usually is still poorly conditioned, and we must seek better alternatives

⟨ interactive example ⟩
Evaluating Polynomials

- When represented in monomial basis, polynomial

\[p_{n-1}(t) = x_1 + x_2 t + \cdots + x_n t^{n-1} \]

can be evaluated efficiently using *Horner’s nested evaluation* scheme

\[p_{n-1}(t) = x_1 + t(x_2 + t(x_3 + t(\cdots (x_{n-1} + tx_n) \cdots))) \]

which requires only \(n \) additions and \(n \) multiplications

- For example,

\[1 - 4t + 5t^2 - 2t^3 + 3t^4 = 1 + t(-4 + t(5 + t(-2 + 3t))) \]

- Other manipulations of interpolating polynomial, such as differentiation or integration, are also relatively easy with monomial basis representation
Lagrange and Newton Interpolation
Lagrange Interpolation

- For given set of data points \((t_i, y_i), \ i = 1, \ldots, n\), let
 \[
 \ell(t) = \prod_{k=1}^{n} (t - t_k) = (t - t_1)(t - t_2) \cdots (t - t_n)
 \]

- Define *barycentric weights*
 \[
 w_j = \frac{1}{\ell'(t_j)} = \frac{1}{\prod_{k=1, k \neq j}^{n} (t_j - t_k)}, \quad j = 1, \ldots, n
 \]

- *Lagrange basis functions* are then given by
 \[
 \ell_j(t) = \ell(t) \frac{w_j}{t - t_j}, \quad j = 1, \ldots, n
 \]

- From definition, \(\ell_j(t)\) is polynomial of degree \(n - 1\)
Lagrange Interpolation, continued

- Assuming common factor \((t_j - t_j)\) in \(\ell(t_j)/(t_j - t_j)\) is canceled to avoid division by zero when evaluating \(\ell_j(t_j)\), then

\[
\ell_j(t_i) = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases}, \quad i, j = 1, \ldots, n
\]

- Matrix of linear system \(Ax = y\) is identity matrix \(I\)

- Coefficients \(x\) for Lagrange basis functions are just data values \(y\)

- Polynomial of degree \(n - 1\) interpolating data points \((t_i, y_i), i = 1, \ldots, n\), is given by

\[
p_{n-1}(t) = \sum_{j=1}^{n} y_j \ell_j(t) = \sum_{j=1}^{n} y_j \ell(t) \frac{w_j}{t - t_j} = \ell(t) \sum_{j=1}^{n} y_j \frac{w_j}{t - t_j}
\]
Lagrange Interpolation, continued

- Once weights w_j have been computed, which requires $O(n^2)$ arithmetic operations, then interpolating polynomial can be evaluated for any given argument in $O(n)$ arithmetic operations.

- In this barycentric form, Lagrange polynomial interpolant is relatively easy to differentiate or integrate.

- If new data point (t_{n+1}, y_{n+1}) is added, then interpolating polynomial can be updated in $O(n)$ arithmetic operations.
 - Divide each w_j by $(t_j - t_{n+1})$, $j = 1, \ldots, n$.
 - Compute new weight w_{n+1} using usual formula.
Lagrange Basis Functions

〈 interactive example 〉
Example: Lagrange Interpolation

- Use Lagrange interpolation to determine interpolating polynomial for three data points \((-2, -27), (0, -1), (1, 0)\)

- Substituting these data, we obtain

\[
\ell(t) = (t - t_1)(t - t_2)(t - t_3) = (t + 2)t(t - 1)
\]

- Weights are given by

\[
\begin{align*}
w_1 &= \frac{1}{(t_1 - t_2)(t_1 - t_3)} = \frac{1}{(-2)(-3)} = \frac{1}{6} \\
w_2 &= \frac{1}{(t_2 - t_1)(t_2 - t_3)} = \frac{1}{2(-1)} = -\frac{1}{2} \\
w_3 &= \frac{1}{(t_3 - t_1)(t_3 - t_2)} = \frac{1}{3 \cdot 1} = \frac{1}{3}
\end{align*}
\]

- Interpolating quadratic polynomial is given by

\[
p_2(t) = (t + 2)t(t - 1) \left(-27 \frac{1}{t + 2} - 1 \frac{-1/2}{t} + 0 \frac{1/3}{t - 1}\right)
\]
Newton Interpolation

- For given set of data points \((t_i, y_i), \ i = 1, \ldots, n\), Newton basis functions are defined by

 \[
 \pi_j(t) = \prod_{k=1}^{j-1} (t - t_k), \quad j = 1, \ldots, n
 \]

 where value of product is taken to be 1 when limits make it vacuous

- Newton interpolating polynomial has form

 \[
 p_{n-1}(t) = x_1 + x_2(t - t_1) + x_3(t - t_1)(t - t_2) + \ldots + x_n(t - t_1)(t - t_2) \cdots (t - t_{n-1})
 \]

- For \(i < j\), \(\pi_j(t_i) = 0\), so basis matrix \(A\) is lower triangular, where \(a_{ij} = \pi_j(t_i)\)
Newton Basis Functions
Newton Interpolation, continued

- Solution x to triangular system $Ax = y$ can be computed by forward-substitution in $O(n^2)$ arithmetic operations.

- Resulting interpolant can be evaluated in $O(n)$ operations for any argument using nested evaluation scheme similar to Horner’s method.
Example: Newton Interpolation

- Use Newton interpolation to determine interpolating polynomial for three data points \((-2, -27), (0, -1), (1, 0)\)

- Using Newton basis, linear system is

\[
\begin{bmatrix}
1 & 0 & 0 \\
1 & t_2 - t_1 & 0 \\
1 & t_3 - t_1 & (t_3 - t_1)(t_3 - t_2)
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
y_1 \\
y_2 \\
y_3
\end{bmatrix}
\]

- For these particular data, system is

\[
\begin{bmatrix}
1 & 0 & 0 \\
1 & 2 & 0 \\
1 & 3 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
-27 \\
-1 \\
0
\end{bmatrix}
\]

whose solution by forward substitution is \(x = [-27 \quad 13 \quad -4]^T\), so interpolating polynomial is

\[p(t) = -27 + 13(t + 2) - 4(t + 2)t\]
Updating Newton Interpolant

- If $p_j(t)$ is polynomial of degree $j - 1$ interpolating j given points, then for any constant $x_{j+1},$

$$p_{j+1}(t) = p_j(t) + x_{j+1}\pi_{j+1}(t)$$

is polynomial of degree j that also interpolates same j points

- Free parameter x_{j+1} can then be chosen so that $p_{j+1}(t)$ interpolates $y_{j+1},$

$$x_{j+1} = \frac{y_{j+1} - p_j(t_{j+1})}{\pi_{j+1}(t_{j+1})}$$

- Newton interpolation begins with constant polynomial $p_1(t) = y_1$ interpolating first data point and then successively incorporates each remaining data point into interpolant

〈 interactive example 〉
Divided Differences

- Given data points \((t_i, y_i), \ i = 1, \ldots, n\), divided differences, denoted by \(f[\]\), are defined recursively by

\[
f[t_1, t_2, \ldots, t_k] = \frac{f[t_2, t_3, \ldots, t_k] - f[t_1, t_2, \ldots, t_{k-1}]}{t_k - t_1}
\]

where recursion begins with \(f[t_k] = y_k, \ k = 1, \ldots, n\)

- Coefficient of \(j\)th basis function in Newton interpolant is given by

\[
x_j = f[t_1, t_2, \ldots, t_j]
\]

- Recursion requires \(\mathcal{O}(n^2)\) arithmetic operations to compute coefficients of Newton interpolant, but is less prone to overflow or underflow than direct formation of triangular Newton basis matrix
Orthogonal Polynomials
Orthogonal Polynomials

- Inner product can be defined on space of polynomials on interval $[a, b]$ by taking
 $$\langle p, q \rangle = \int_a^b p(t)q(t)w(t)dt$$
 where $w(t)$ is nonnegative weight function

- Two polynomials p and q are orthogonal if $\langle p, q \rangle = 0$

- Set of polynomials $\{p_i\}$ is orthonormal if
 $$\langle p_i, p_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

- Given set of polynomials, Gram-Schmidt orthogonalization can be used to generate orthonormal set spanning same space
Orthogonal Polynomials, continued

- For example, with inner product given by weight function $w(t) \equiv 1$ on interval $[-1, 1]$, applying Gram-Schmidt process to set of monomials $1, t, t^2, t^3, \ldots$ yields *Legendre polynomials*

\[
1, \ t, \ (3t^2 - 1)/2, \ (5t^3 - 3t)/2, \ (35t^4 - 30t^2 + 3)/8, \ \ldots
\]

first n of which form an orthogonal basis for space of polynomials of degree at most $n - 1$

- Other choices of weight functions and intervals yield other orthogonal polynomials, such as Chebyshev, Jacobi, Laguerre, and Hermite
Orthogonal Polynomials, continued

- Orthogonal polynomials have many useful properties
- They satisfy three-term recurrence relation of form

\[p_{k+1}(t) = (\alpha_k t + \beta_k)p_k(t) - \gamma_k p_{k-1}(t) \]

which makes them very efficient to generate and evaluate

- Orthogonality makes them very natural for least squares approximation, and they are also useful for generating Gaussian quadrature rules, which we will see later
Chebyshev Polynomials

- kth Chebyshev polynomial of first kind, defined on interval $[-1, 1]$ by

$$ T_k(t) = \cos(k \arccos(t)) $$

are orthogonal with respect to weight function $(1 - t^2)^{-1/2}$

- First few Chebyshev polynomials are given by

$$ 1, \ t, \ 2t^2 - 1, \ 4t^3 - 3t, \ 8t^4 - 8t^2 + 1, \ 16t^5 - 20t^3 + 5t, \ ... $$

- Equi-oscillation property: successive extrema of T_k are equal in magnitude and alternate in sign, which distributes error uniformly when approximating arbitrary continuous function
Chebyshev Basis Functions

\[T_0, T_1, T_2, T_3, T_4, T_5 \]

⟨ interactive example ⟩
Chebyshev Points

- **Chebyshev points** are zeros of T_k, given by

$$t_i = \cos \left(\frac{(2i - 1)\pi}{2k} \right), \quad i = 1, \ldots, k$$

or extrema of T_k, given by

$$t_i = \cos \left(\frac{i\pi}{k} \right), \quad i = 0, 1, \ldots, k$$

- Chebyshev points are abscissas of points equally spaced around unit circle in \mathbb{R}^2

- Chebyshev points have attractive properties for interpolation and other problems
Convergence
Interpolating Continuous Functions

- If data points are discrete sample of continuous function, how well does interpolant approximate that function between sample points?

- If f is smooth function, and p_{n-1} is polynomial of degree at most $n - 1$ interpolating f at n points t_1, \ldots, t_n, then

$$f(t) - p_{n-1}(t) = \frac{f^{(n)}(\theta)}{n!} (t - t_1)(t - t_2) \cdots (t - t_n)$$

where θ is some (unknown) point in interval $[t_1, t_n]$

- Since point θ is unknown, this result is not particularly useful unless bound on appropriate derivative of f is known
If $|f^{(n)}(t)| \leq M$ for all $t \in [t_1, t_n]$, and $h = \max\{t_{i+1} - t_i : i = 1, \ldots, n - 1\}$, then

$$\max_{t \in [t_1, t_n]} |f(t) - p_{n-1}(t)| \leq \frac{Mh^n}{4n}$$

Error diminishes with increasing n and decreasing h, but only if $|f^{(n)}(t)|$ does not grow too rapidly with n.
High-Degree Polynomial Interpolation

- Interpolating polynomials of high degree are expensive to determine and evaluate.
- In some bases, coefficients of polynomial may be poorly determined due to ill-conditioning of linear system to be solved.
- High-degree polynomial necessarily has lots of “wiggles,” which may bear no relation to data to be fit.
- Polynomial passes through required data points, but it may oscillate wildly between data points.
Convergence

- Polynomial interpolating continuous function may not converge to function as number of data points and polynomial degree increases.

- Equally spaced interpolation points often yield unsatisfactory results near ends of interval.

- If points are bunched near ends of interval, more satisfactory results are likely to be obtained with polynomial interpolation.

- Use of Chebyshev points distributes error evenly and yields convergence throughout interval for any sufficiently smooth function.
Example: Runge’s Function

Polynomial interpolants of Runge’s function at *equally spaced* points *do not* converge

\[f(t) = \frac{1}{1 + 25t^2} \]

\[p_5(t) \]

\[p_{10}(t) \]
Example: Runge’s Function

Polynomial interpolants of Runge’s function at Chebyshev points do converge

\[f(t) = \frac{1}{1 + 25t^2} \]

- \(p_5(t) \)
- \(p_{10}(t) \)
Taylor Polynomial

- Another useful form of polynomial interpolation for smooth function f is polynomial given by truncated Taylor series

$$p_n(t) = f(a) + f'(a)(t - a) + \frac{f''(a)}{2}(t - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(t - a)^n$$

- Polynomial interpolates f in that values of p_n and its first n derivatives match those of f and its first n derivatives evaluated at $t = a$, so $p_n(t)$ is good approximation to $f(t)$ for t near a

- We have already seen examples in Newton’s method for nonlinear equations and optimization
Piecewise Polynomial Interpolation
Piecewise Polynomial Interpolation

- Fitting single polynomial to large number of data points is likely to yield unsatisfactory oscillating behavior in interpolant

- Piecewise polynomials provide alternative to practical and theoretical difficulties with high-degree polynomial interpolation

- Main advantage of piecewise polynomial interpolation is that large number of data points can be fit with low-degree polynomials

- In piecewise interpolation of given data points \((t_i, y_i)\), different function is used in each subinterval \([t_i, t_{i+1}]\)

- Abscissas \(t_i\) are called knots or breakpoints, at which interpolant changes from one function to another
Piecewise Interpolation, continued

- Simplest example is piecewise linear interpolation, in which successive pairs of data points are connected by straight lines.

- Although piecewise interpolation eliminates excessive oscillation and nonconvergence, it appears to sacrifice smoothness of interpolating function.

- We have many degrees of freedom in choosing piecewise polynomial interpolant, however, which can be exploited to obtain smooth interpolating function despite its piecewise nature.

⟨ interactive example ⟩
Hermite Interpolation

- In *Hermite interpolation*, derivatives as well as values of interpolating function are taken into account.

- Including derivative values adds more equations to linear system that determines parameters of interpolating function.

- To have unique solution, number of equations must equal number of parameters to be determined.

- Piecewise cubic polynomials are typical choice for Hermite interpolation, providing flexibility, simplicity, and efficiency.
Hermite Cubic Interpolation

- **Hermite cubic interpolant** is piecewise cubic polynomial interpolant with continuous first derivative

- Piecewise cubic polynomial with \(n \) knots has \(4(n - 1) \) parameters to be determined

- Requiring that it interpolate given data gives \(2(n - 1) \) equations

- Requiring that it have one continuous derivative gives \(n - 2 \) additional equations, or total of \(3n - 4 \), which still leaves \(n \) free parameters

- Thus, Hermite cubic interpolant is not unique, and remaining free parameters can be chosen so that result satisfies additional constraints
Cubic Spline Interpolation

- **Spline** is piecewise polynomial of degree k that is $k - 1$ times continuously differentiable.

- For example, linear spline is of degree 1 and has 0 continuous derivatives, i.e., it is continuous, but not smooth, and could be described as “broken line”.

- **Cubic spline** is piecewise cubic polynomial that is twice continuously differentiable.

- As with Hermite cubic, interpolating given data and requiring one continuous derivative imposes $3n - 4$ constraints on cubic spline.

- Requiring continuous second derivative imposes $n - 2$ additional constraints, leaving 2 remaining free parameters.
Cubic Splines, continued

Final two parameters can be fixed in various ways

- Specify first derivative at endpoints \(t_1 \) and \(t_n \)

- Force second derivative to be zero at endpoints, which gives \textit{natural spline}

- Enforce “not-a-knot” condition, which forces two consecutive cubic pieces to be same

- Force first derivatives, as well as second derivatives, to match at endpoints \(t_1 \) and \(t_n \) (if spline is to be periodic)
Example: Cubic Spline Interpolation

- Determine natural cubic spline interpolating three data points \((t_i, y_i), \ i = 1, 2, 3\)

- Required interpolant is piecewise cubic function defined by separate cubic polynomials in each of two intervals \([t_1, t_2]\) and \([t_2, t_3]\)

- Denote these two polynomials by

\[
p_1(t) = \alpha_1 + \alpha_2 t + \alpha_3 t^2 + \alpha_4 t^3
\]

\[
p_2(t) = \beta_1 + \beta_2 t + \beta_3 t^2 + \beta_4 t^3
\]

- Eight parameters are to be determined, so we need eight equations
Example, continued

- Requiring first cubic to interpolate data at end points of first interval \([t_1, t_2]\) gives two equations

\[
\alpha_1 + \alpha_2 t_1 + \alpha_3 t_1^2 + \alpha_4 t_1^3 = y_1
\]
\[
\alpha_1 + \alpha_2 t_2 + \alpha_3 t_2^2 + \alpha_4 t_2^3 = y_2
\]

- Requiring second cubic to interpolate data at end points of second interval \([t_2, t_3]\) gives two equations

\[
\beta_1 + \beta_2 t_2 + \beta_3 t_2^2 + \beta_4 t_2^3 = y_2
\]
\[
\beta_1 + \beta_2 t_3 + \beta_3 t_3^2 + \beta_4 t_3^3 = y_3
\]

- Requiring first derivative of interpolant to be continuous at \(t_2\) gives equation

\[
\alpha_2 + 2\alpha_3 t_2 + 3\alpha_4 t_2^2 = \beta_2 + 2\beta_3 t_2 + 3\beta_4 t_2^2
\]
Example, continued

- Requiring second derivative of interpolant function to be continuous at \(t_2 \) gives equation

\[
2\alpha_3 + 6\alpha_4 t_2 = 2\beta_3 + 6\beta_4 t_2
\]

- Finally, by definition natural spline has second derivative equal to zero at endpoints, which gives two equations

\[
2\alpha_3 + 6\alpha_4 t_1 = 0
\]

\[
2\beta_3 + 6\beta_4 t_3 = 0
\]

- When particular data values are substituted for \(t_i \) and \(y_i \), system of eight linear equations can be solved for eight unknown parameters \(\alpha_i \) and \(\beta_i \).
Hermite Cubic vs Spline Interpolation

- Choice between Hermite cubic and spline interpolation depends on data to be fit and on purpose for doing interpolation.

- If smoothness is of paramount importance, then spline interpolation may be most appropriate.

- But Hermite cubic interpolant may have more pleasing visual appearance and allows flexibility to preserve monotonicity if original data are monotonic.

- In any case, it is advisable to plot interpolant and data to help assess how well interpolating function captures behavior of original data.
Hermite Cubic vs Spline Interpolation
B-splines
B-splines

- B-splines form basis for family of spline functions of given degree

- B-splines can be defined in various ways, including recursion (which we will use), convolution, and divided differences

- Although in practice we use only finite set of knots t_1, \ldots, t_n, for notational convenience we will assume infinite set of knots

 $\cdots < t_{-2} < t_{-1} < t_0 < t_1 < t_2 < \cdots$

 Additional knots can be taken as arbitrarily defined points outside interval $[t_1, t_n]$

- We will also use linear functions

 \[v_i^k(t) = (t - t_i)/(t_{i+k} - t_i) \]
B-splines, continued

- To start recursion, define B-splines of degree 0 by

\[B_i^0(t) = \begin{cases}
1 & \text{if } t_i \leq t < t_{i+1} \\
0 & \text{otherwise}
\end{cases} \]

and then for \(k > 0 \) define B-splines of degree \(k \) by

\[B_i^k(t) = v_i^k(t)B_i^{k-1}(t) + (1 - v_{i+1}^k(t))B_{i+1}^{k-1}(t) \]

- Since \(B_i^0 \) is piecewise constant and \(v_i^k \) is linear, \(B_i^1 \) is piecewise linear

- Similarly, \(B_i^2 \) is in turn piecewise quadratic, and in general, \(B_i^k \) is piecewise polynomial of degree \(k \)
B-splines, continued

\[B_i^0 \]

\[B_i^1 \]

\[B_i^2 \]

\[B_i^3 \]
Important properties of B-spline functions B_i^k

1. For $t < t_i$ or $t > t_{i+k+1}$, $B_i^k(t) = 0$

2. For $t_i < t < t_{i+k+1}$, $B_i^k(t) > 0$

3. For all t, $\sum_{i=-\infty}^{\infty} B_i^k(t) = 1$

4. For $k \geq 1$, B_i^k has $k - 1$ continuous derivatives

5. Set of functions $\{B_{1-k}^k, \ldots, B_{n-1}^k\}$ is linearly independent on interval $[t_1, t_n]$ and spans space of all splines of degree k having knots t_i
B-splines, continued

- Properties 1 and 2 together say that B-spline functions have local support.
- Property 3 gives normalization.
- Property 4 says that they are indeed splines.
- Property 5 says that for given k, these functions form basis for set of all splines of degree k.
If we use B-spline basis, linear system to be solved for spline coefficients will be nonsingular and banded

Use of B-spline basis yields efficient and stable methods for determining and evaluating spline interpolants, and many library routines for spline interpolation are based on this approach

B-splines are also useful in many other contexts, such as numerical solution of differential equations, as we will see later
Summary – Interpolation

- Interpolating function fits given data points exactly, which is not appropriate if data are noisy

- Interpolating function given by linear combination of basis functions, whose coefficients are to be determined

- Existence and uniqueness of interpolant depend on whether number of parameters to be determined matches number of data points to be fit

- Polynomial interpolation can use monomial, Lagrange, or Newton bases, with corresponding tradeoffs in cost of determining and manipulating resulting interpolant
Summary – Interpolation, continued

- Convergence of interpolating polynomials to underlying continuous function depends on location of sample points

- Piecewise polynomial (e.g., spline) interpolation can fit large number of data points with low-degree polynomials

- Cubic spline interpolation is excellent choice when smoothness is important

- Hermite cubics offer greater flexibility to retain properties of underlying data, such as monotonicity