CS 450 - Numerical Analysis

Chapter 5: Nonlinear Equations ${ }^{\dagger}$

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign
heath@illinois.edu
January 28, 2019

[^0]Nonlinear Equations

Nonlinear Equations

- Given function f, we seek value x for which

$$
f(x)=0
$$

- Solution x is root of equation, or zero of function f
- So problem is known as root finding or zero finding

Nonlinear Equations

Two important cases

- Single nonlinear equation in one unknown, where

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

Solution is scalar x for which $f(x)=0$

- System of n coupled nonlinear equations in n unknowns, where

$$
\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Solution is n-vector \boldsymbol{x} for which all components of \boldsymbol{f} are zero simultaneously, $\boldsymbol{f}(\boldsymbol{x})=\mathbf{0}$

Examples: Nonlinear Equations

- Example of nonlinear equation in one dimension

$$
x^{2}-4 \sin (x)=0
$$

for which $x=1.9$ is one approximate solution

- Example of system of nonlinear equations in two dimensions

$$
\begin{array}{r}
x_{1}^{2}-x_{2}+0.25=0 \\
-x_{1}+x_{2}^{2}+0.25=0
\end{array}
$$

for which $x=\left[\begin{array}{ll}0.5 & 0.5\end{array}\right]^{T}$ is solution vector

Systems of Nonlinear Equations

Solving systems of nonlinear equations is much more difficult than 1D case because

- Wider variety of behavior is possible, so determining existence and number of solutions or good starting guess is much more complex
- There is no simple way, in general, to guarantee convergence to desired solution or to bracket solution to produce absolutely safe method
- Computational overhead increases rapidly with dimension of problem

Existence, Uniqueness, and Conditioning

Existence and Uniqueness

- Existence and uniqueness of solutions are more complicated for nonlinear equations than for linear equations
- For function $f: \mathbb{R} \rightarrow \mathbb{R}$, bracket is interval $[a, b]$ for which sign of f differs at endpoints
- If f is continuous and $\operatorname{sign}(f(a)) \neq \operatorname{sign}(f(b))$, then Intermediate Value Theorem implies there is $x^{*} \in[a, b]$ such that $f\left(x^{*}\right)=0$
- There is no simple analog for n dimensions

Examples: One Dimension

Nonlinear equations can have any number of solutions

- $\exp (x)+1=0$ has no solution
- $\exp (-x)-x=0$ has one solution
- $x^{2}-4 \sin (x)=0$ has two solutions
- $x^{3}+6 x^{2}+11 x-6=0$ has three solutions
- $\sin (x)=0$ has infinitely many solutions

Example: Systems in Two Dimensions

$$
\begin{aligned}
x_{1}^{2}-x_{2}+\gamma & =0 \\
-x_{1}+x_{2}^{2}+\gamma & =0
\end{aligned}
$$

Multiplicity

- If $f\left(x^{*}\right)=f^{\prime}\left(x^{*}\right)=f^{\prime \prime}\left(x^{*}\right)=\cdots=f^{(m-1)}\left(x^{*}\right)=0$ but $f^{(m)}\left(x^{*}\right) \neq 0$ (i.e., m th derivative is lowest derivative of f that does not vanish at $\left.x^{*}\right)$, then root x^{*} has multiplicity m

- If $m=1\left(f\left(x^{*}\right)=0\right.$ and $\left.f^{\prime}\left(x^{*}\right) \neq 0\right)$, then x^{*} is simple root

Sensitivity and Conditioning

- Conditioning of root finding problem is opposite to that for evaluating function
- Absolute condition number of root finding problem for root x^{*} of $f: \mathbb{R} \rightarrow \mathbb{R}$ is $1 /\left|f^{\prime}\left(x^{*}\right)\right|$
- Root is ill-conditioned if tangent line is nearly horizontal
- In particular, multiple root $(m>1)$ is ill-conditioned
- Absolute condition number of root finding problem for root \boldsymbol{x}^{*} of $\boldsymbol{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is $\left\|\boldsymbol{J}_{f}^{-1}\left(\boldsymbol{x}^{*}\right)\right\|$, where \boldsymbol{J}_{f} is Jacobian matrix of \boldsymbol{f},

$$
\left\{\boldsymbol{J}_{f}(\boldsymbol{x})\right\}_{i j}=\partial f_{i}(\boldsymbol{x}) / \partial x_{j}
$$

- Root is ill-conditioned if Jacobian matrix is nearly singular

Sensitivity and Conditioning

well-conditioned

ill-conditioned

Sensitivity and Conditioning

- What do we mean by approximate solution \hat{x} to nonlinear system,

$$
\|\boldsymbol{f}(\hat{\boldsymbol{x}})\| \approx 0 \quad \text { or } \quad\left\|\hat{\boldsymbol{x}}-\boldsymbol{x}^{*}\right\| \approx 0 ?
$$

- First corresponds to "small residual," second measures closeness to (usually unknown) true solution \boldsymbol{x}^{*}
- Solution criteria are not necessarily "small" simultaneously
- Small residual implies accurate solution only if problem is well-conditioned

Convergence of Iterative Methods

Convergence Rate

- For general iterative methods, define error at iteration k by

$$
\boldsymbol{e}_{k}=\boldsymbol{x}_{k}-\boldsymbol{x}^{*}
$$

where \boldsymbol{x}_{k} is approximate solution and \boldsymbol{x}^{*} is true solution

- For methods that maintain interval known to contain solution, rather than specific approximate value for solution, take error to be length of interval containing solution
- Sequence converges with rate r if

$$
\lim _{k \rightarrow \infty} \frac{\left\|\boldsymbol{e}_{k+1}\right\|}{\left\|\boldsymbol{e}_{k}\right\|^{r}}=C
$$

for some finite nonzero constant C

Convergence Rate, continued

Some particular cases of interest

- $r=1$: linear $\quad(C<1)$
- $r>1$: superlinear
- $r=2$: quadratic

Convergence	Digits gained per iteration		
rate	constant		
supear	quadratic		increasing
:---			
double			

Bisection Method in 1D

Interval Bisection Method

Bisection method begins with initial bracket and repeatedly halves its length until solution has been isolated as accurately as desired
while $((b-a)>t o l)$ do
$m=a+(b-a) / 2$
if $\operatorname{sign}(f(a))=\operatorname{sign}(f(m))$ then
$a=m$
else
$b=m$
end
end

〈 interactive example 〉

Example: Bisection Method

$f(x)=x^{2}-4 \sin (x)=0$			
a	$f(a)$	b	$f(b)$
1.000000	-2.365884	3.000000	8.435520
1.000000	-2.365884	2.000000	0.362810
1.500000	-1.739980	2.000000	0.362810
1.750000	-0.873444	2.000000	0.362810
1.875000	-0.300718	2.000000	0.362810
1.875000	-0.300718	1.937500	0.019849
1.906250	-0.143255	1.937500	0.019849
1.921875	-0.062406	1.937500	0.019849
1.929688	-0.021454	1.937500	0.019849
1.933594	-0.000846	1.937500	0.019849
1.933594	-0.000846	1.935547	0.009491
1.933594	-0.000846	1.934570	0.004320
1.933594	-0.000846	1.934082	0.001736
1.933594	-0.000846	1.933838	0.000445

Bisection Method, continued

- Bisection method makes no use of magnitudes of function values, only their signs
- Bisection is certain to converge, but does so slowly
- At each iteration, length of interval containing solution reduced by half, convergence rate is linear, with $r=1$ and $C=0.5$
- One bit of accuracy is gained in approximate solution for each iteration of bisection
- Given starting interval $[a, b]$, length of interval after k iterations is $(b-a) / 2^{k}$, so achieving error tolerance of $t o l$ requires

$$
\left\lceil\log _{2}\left(\frac{b-a}{t o l}\right)\right\rceil
$$

iterations, regardless of function f involved

Fixed-Point Iteration in 1D

Fixed-Point Problems

- Fixed point of given function $g: \mathbb{R} \rightarrow \mathbb{R}$ is value x such that

$$
x=g(x)
$$

- Many iterative methods for solving nonlinear equations use fixed-point iteration scheme of form

$$
x_{k+1}=g\left(x_{k}\right)
$$

where fixed points for g are solutions for $f(x)=0$

- Also called functional iteration, since function g is applied repeatedly to initial starting value x_{0}
- For given equation $f(x)=0$, there may be many equivalent fixed-point problems $x=g(x)$ with different choices for g

Example: Fixed-Point Problems

If $f(x)=x^{2}-x-2$, then fixed points of each of functions

- $g(x)=x^{2}-2$
- $g(x)=\sqrt{x+2}$
- $g(x)=1+2 / x$
- $g(x)=\frac{x^{2}+2}{2 x-1}$
are solutions to equation $f(x)=0$

Example: Fixed-Point Problems

Example: Fixed-Point Iteration

Example: Fixed-Point Iteration

Convergence of Fixed-Point Iteration

- If $x^{*}=g\left(x^{*}\right)$ and $\left|g^{\prime}\left(x^{*}\right)\right|<1$, then there is interval containing x^{*} such that iteration

$$
x_{k+1}=g\left(x_{k}\right)
$$

converges to x^{*} if started within that interval

- If $\left|g^{\prime}\left(x^{*}\right)\right|>1$, then iterative scheme diverges
- Asymptotic convergence rate of fixed-point iteration is usually linear, with constant $C=\left|g^{\prime}\left(x^{*}\right)\right|$
- But if $g^{\prime}\left(x^{*}\right)=0$, then convergence rate is at least quadratic

Newton's Method in 1D

Newton's Method

- Truncated Taylor series

$$
f(x+h) \approx f(x)+f^{\prime}(x) h
$$

is linear function of h approximating f near x

- Replace nonlinear function f by this linear function, whose zero is $h=-f(x) / f^{\prime}(x)$
- Zeros of original function and linear approximation are not identical, so repeat process, giving Newton's method

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Newton's Method, continued

Newton's method approximates nonlinear function f near x_{k} by tangent line at $f\left(x_{k}\right)$

Example: Newton's Method

- Use Newton's method to find root of

$$
f(x)=x^{2}-4 \sin (x)=0
$$

- Derivative is

$$
f^{\prime}(x)=2 x-4 \cos (x)
$$

so iteration scheme is

$$
x_{k+1}=x_{k}-\frac{x_{k}^{2}-4 \sin \left(x_{k}\right)}{2 x_{k}-4 \cos \left(x_{k}\right)}
$$

- Taking $x_{0}=3$ as starting value, we obtain

x	$f(x)$	$f^{\prime}(x)$	h
3.000000	8.435520	9.959970	-0.846942
2.153058	1.294772	6.505771	-0.199019
1.954039	0.108438	5.403795	-0.020067
1.933972	0.001152	5.288919	-0.000218
1.933754	0.000000	5.287670	0.000000

Convergence of Newton's Method

- Newton's method transforms nonlinear equation $f(x)=0$ into fixed-point problem $x=g(x)$, where

$$
g(x)=x-f(x) / f^{\prime}(x)
$$

and hence

$$
g^{\prime}(x)=f(x) f^{\prime \prime}(x) /\left(f^{\prime}(x)\right)^{2}
$$

- If x^{*} is simple root (i.e., $f\left(x^{*}\right)=0$ and $f^{\prime}\left(x^{*}\right) \neq 0$), then $g^{\prime}\left(x^{*}\right)=0$
- Convergence rate of Newton's method for simple root is therefore quadratic ($r=2$)
- But iterations must start close enough to root to converge

Newton's Method, continued

For multiple root, convergence rate of Newton's method is only linear, with constant $C=1-(1 / m)$, where m is multiplicity

k	$f(x)=x^{2}-1$	$f(x)=x^{2}-2 x+1$
0	2.0	2.0
1	1.25	1.5
2	1.025	1.25
3	1.0003	1.125
4	1.00000005	1.0625
5	1.0	1.03125

Interpolation Methods in 1D

Secant Method

- For each iteration, Newton's method requires evaluation of both function and its derivative, which may be inconvenient or expensive
- In secant method, derivative is approximated by finite difference using two successive iterates, so iteration becomes

$$
x_{k+1}=x_{k}-f\left(x_{k}\right) \frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}
$$

- Convergence rate of secant method is normally superlinear, with $r \approx 1.618$

Secant Method, continued

Secant method approximates nonlinear function f by secant line through previous two iterates

〈 interactive example 〉

Example: Secant Method

- Use secant method to find root of

$$
f(x)=x^{2}-4 \sin (x)=0
$$

- Taking $x_{0}=1$ and $x_{1}=3$ as starting guesses, we obtain

x	$f(x)$	h
1.000000	-2.365884	
3.000000	8.435520	-1.561930
1.438070	-1.896774	0.286735
1.724805	-0.977706	0.305029
2.029833	0.534305	-0.107789
1.922044	-0.061523	0.011130
1.933174	-0.003064	0.000583
1.933757	0.000019	-0.000004
1.933754	0.000000	0.000000

Higher-Degree Interpolation

- Secant method uses linear interpolation to approximate function whose zero is sought
- Higher convergence rate can be obtained by using higher-degree polynomial interpolation
- For example, quadratic interpolation (Muller's method) has superlinear convergence rate with $r \approx 1.839$
- Unfortunately, using higher degree polynomial also has disadvantages
- interpolating polynomial may not have real roots
- roots may not be easy to compute
- choice of root to use as next iterate may not be obvious

Inverse Interpolation

- Good alternative is inverse interpolation, where x_{k} are interpolated as function of $y_{k}=f\left(x_{k}\right)$ by polynomial $p(y)$, so next approximate solution is $p(0)$
- Most commonly used for root finding is inverse quadratic interpolation

Inverse Quadratic Interpolation

- Given approximate solution values a, b, c, with function values f_{a}, f_{b}, f_{c}, next approximate solution found by fitting quadratic polynomial to a, b, c as function of f_{a}, f_{b}, f_{c}, then evaluating polynomial at 0
- Based on nontrivial derivation using Lagrange interpolation, we compute

$$
\begin{gathered}
u=f_{b} / f_{c}, \quad v=f_{b} / f_{a}, \quad w=f_{a} / f_{c} \\
p=v(w(u-w)(c-b)-(1-u)(b-a)) \\
q=(w-1)(u-1)(v-1)
\end{gathered}
$$

then new approximate solution is $b+p / q$

- Convergence rate is normally $r \approx 1.839$

Example: Inverse Quadratic Interpolation

- Use inverse quadratic interpolation to find root of

$$
f(x)=x^{2}-4 \sin (x)=0
$$

- Taking $x=1,2$, and 3 as starting values, we obtain

x	$f(x)$	h
1.000000	-2.365884	
2.000000	0.362810	
3.000000	8.435520	
1.886318	-0.244343	-0.113682
1.939558	0.030786	0.053240
1.933742	-0.000060	-0.005815
1.933754	0.000000	0.000011
1.933754	0.000000	0.000000

Linear Fractional Interpolation

- Interpolation using rational fraction of form

$$
\phi(x)=\frac{x-u}{v x-w}
$$

is especially useful for finding zeros of functions having horizontal or vertical asymptotes

- ϕ has zero at $x=u$, vertical asymptote at $x=w / v$, and horizontal asymptote at $y=1 / v$
- Given approximate solution values a, b, c, with function values f_{a}, f_{b}, f_{c}, next approximate solution is $c+h$, where

$$
h=\frac{(a-c)(b-c)\left(f_{a}-f_{b}\right) f_{c}}{(a-c)\left(f_{c}-f_{b}\right) f_{a}-(b-c)\left(f_{c}-f_{a}\right) f_{b}}
$$

- Convergence rate is normally $r \approx 1.839$, same as for quadratic interpolation (inverse or regular)

Example: Linear Fractional Interpolation

- Use linear fractional interpolation to find root of

$$
f(x)=x^{2}-4 \sin (x)=0
$$

- Taking $x=1,2$, and 3 as starting values, we obtain

x	$f(x)$	h
1.000000	-2.365884	
2.000000	0.362810	
3.000000	8.435520	
1.906953	-0.139647	-1.093047
1.933351	-0.002131	0.026398
1.933756	0.000013	-0.000406
1.933754	0.000000	-0.000003

〈interactive example 〉

Hybrid Methods

Safeguarded Methods

- Rapidly convergent methods for solving nonlinear equations may not converge unless started close to solution, but safe methods are slow
- Hybrid methods combine features of both types of methods to achieve both speed and reliability
- Use rapidly convergent method, but maintain bracket around solution
- If next approximate solution given by fast method falls outside bracketing interval, perform one iteration of safe method, such as bisection

Safeguarded Methods, continued

- Fast method can then be tried again on smaller interval with greater chance of success
- Ultimately, convergence rate of fast method should prevail
- Hybrid approach seldom does worse than safe method, and usually does much better
- Popular combination is bisection and inverse quadratic interpolation, for which no derivatives required

Zeros of Polynomials

- For polynomial $p(x)$ of degree n, one may want to find all of its n zeros, which may be complex even if coefficients are real
- Several approaches are available
- Use root-finding method such as Newton's or Muller's method to find one root, deflate it out, and repeat
- Form companion matrix of polynomial and use eigenvalue routine to compute all its eigenvalues
- Use method designed specifically for finding all roots of polynomial, such as Jenkins-Traub

Newton's Method for Nonlinear Systems

Fixed-Point Iteration

- Fixed-point problem for $\boldsymbol{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is to find vector \boldsymbol{x} such that

$$
x=g(x)
$$

- Corresponding fixed-point iteration is

$$
x_{k+1}=\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)
$$

- If $\rho\left(\boldsymbol{G}\left(\boldsymbol{x}^{*}\right)\right)<1$, where ρ is spectral radius and $\boldsymbol{G}(\boldsymbol{x})$ is Jacobian matrix of \boldsymbol{g} evaluated at \boldsymbol{x}, then fixed-point iteration converges if started close enough to solution
- Convergence rate is normally linear, with constant C given by spectral radius $\rho\left(\boldsymbol{G}\left(\boldsymbol{x}^{*}\right)\right)$
- If $\boldsymbol{G}\left(\boldsymbol{x}^{*}\right)=\boldsymbol{O}$, then convergence rate is at least quadratic

Newton's Method

- In n dimensions, Newton's method has form

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)^{-1} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)
$$

where $\boldsymbol{J}(\boldsymbol{x})$ is Jacobian matrix of \boldsymbol{f},

$$
\{\boldsymbol{J}(\boldsymbol{x})\}_{i j}=\frac{\partial f_{i}(\boldsymbol{x})}{\partial x_{j}}
$$

- In practice, we do not explicitly invert $\boldsymbol{J}\left(\boldsymbol{x}_{k}\right)$, but instead solve linear system

$$
\boldsymbol{J}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s}_{k}=-\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)
$$

for Newton step $\boldsymbol{s}_{\boldsymbol{k}}$, then take as next iterate

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\boldsymbol{s}_{k}
$$

Example: Newton's Method

- Use Newton's method to solve nonlinear system

$$
\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{l}
x_{1}+2 x_{2}-2 \\
x_{1}^{2}+4 x_{2}^{2}-4
\end{array}\right]=\mathbf{0}
$$

- Jacobian matrix is $\boldsymbol{J}_{f}(\boldsymbol{x})=\left[\begin{array}{cc}1 & 2 \\ 2 x_{1} & 8 x_{2}\end{array}\right]$
- If we take $x_{0}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$, then

$$
\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)=\left[\begin{array}{r}
3 \\
13
\end{array}\right], \quad \boldsymbol{J}_{f}\left(\boldsymbol{x}_{0}\right)=\left[\begin{array}{rr}
1 & 2 \\
2 & 16
\end{array}\right]
$$

- Solving system $\left[\begin{array}{rr}1 & 2 \\ 2 & 16\end{array}\right] \boldsymbol{s}_{0}=\left[\begin{array}{r}-3 \\ -13\end{array}\right] \quad$ gives $\boldsymbol{s}_{0}=\left[\begin{array}{l}-1.83 \\ -0.58\end{array}\right]$, so

$$
x_{1}=x_{0}+s_{0}=\left[\begin{array}{ll}
-0.83 & 1.42
\end{array}\right]^{T^{L}}
$$

Example, continued

- Evaluating at new point,

$$
\boldsymbol{f}\left(\boldsymbol{x}_{1}\right)=\left[\begin{array}{c}
0 \\
4.72
\end{array}\right], \quad \boldsymbol{J}_{f}\left(\boldsymbol{x}_{1}\right)=\left[\begin{array}{cc}
1 & 2 \\
-1.67 & 11.3
\end{array}\right]
$$

- Solving system $\left[\begin{array}{cc}1 & 2 \\ -1.67 & 11.3\end{array}\right] s_{1}=\left[\begin{array}{c}0 \\ -4.72\end{array}\right]$ gives

$$
s_{1}=\left[\begin{array}{ll}
0.64 & -0.32
\end{array}\right]^{T} \text {, so } x_{2}=x_{1}+s_{1}=\left[\begin{array}{ll}
-0.19 & 1.10
\end{array}\right]^{T}
$$

- Evaluating at new point,

$$
\boldsymbol{f}\left(\boldsymbol{x}_{2}\right)=\left[\begin{array}{c}
0 \\
0.83
\end{array}\right], \quad \boldsymbol{J}_{f}\left(\boldsymbol{x}_{2}\right)=\left[\begin{array}{cc}
1 & 2 \\
-0.38 & 8.76
\end{array}\right]
$$

- Iterations eventually convergence to solution $x^{*}=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}$

〈interactive example 〉

Convergence of Newton's Method

- Differentiating corresponding fixed-point operator

$$
g(x)=x-J(x)^{-1} f(x)
$$

and evaluating at solution \boldsymbol{x}^{*} gives

$$
\boldsymbol{G}\left(\boldsymbol{x}^{*}\right)=\boldsymbol{I}-\left(\boldsymbol{J}\left(\boldsymbol{x}^{*}\right)^{-1} \boldsymbol{J}\left(\boldsymbol{x}^{*}\right)+\sum_{i=1}^{n} f_{i}\left(\boldsymbol{x}^{*}\right) \boldsymbol{H}_{i}\left(\boldsymbol{x}^{*}\right)\right)=\boldsymbol{O}
$$

where $\boldsymbol{H}_{i}(\boldsymbol{x})$ is component matrix of derivative of $\boldsymbol{J}(\boldsymbol{x})^{-1}$

- Convergence rate of Newton's method for nonlinear systems is normally quadratic, provided Jacobian matrix $\boldsymbol{J}\left(\boldsymbol{x}^{*}\right)$ is nonsingular
- But it must be started close enough to solution to converge

Cost of Newton's Method

Cost per iteration of Newton's method for dense problem in n dimensions is substantial

- Computing Jacobian matrix costs n^{2} scalar function evaluations
- Solving linear system costs $\mathcal{O}\left(n^{3}\right)$ operations

Secant Updating Methods

Secant Updating Methods

- Secant updating methods reduce cost by
- Using function values at successive iterates to build approximate Jacobian and avoiding explicit evaluation of derivatives
- Updating factorization of approximate Jacobian rather than refactoring it each iteration
- Most secant updating methods have superlinear but not quadratic convergence rate
- Secant updating methods often cost less overall than Newton's method because of lower cost per iteration

Broyden's Method

- Broyden's method is typical secant updating method
- Beginning with initial guess x_{0} for solution and initial approximate Jacobian \boldsymbol{B}_{0}, following steps are repeated until convergence
$x_{0}=$ initial guess
$\boldsymbol{B}_{0}=$ initial Jacobian approximation for $k=0,1,2, \ldots$

Solve $\boldsymbol{B}_{k} \boldsymbol{s}_{k}=-\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$ for \boldsymbol{s}_{k}
$\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\boldsymbol{s}_{k}$
$\boldsymbol{y}_{k}=\boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$
$\boldsymbol{B}_{k+1}=\boldsymbol{B}_{k}+\left(\left(\boldsymbol{y}_{k}-\boldsymbol{B}_{k} \boldsymbol{s}_{k}\right) \boldsymbol{s}_{k}^{T}\right) /\left(\boldsymbol{s}_{k}^{T} \boldsymbol{s}_{k}\right)$
end

- Motivation for formula for \boldsymbol{B}_{k+1} is to make least change to \boldsymbol{B}_{k} subject to satisfying secant equation

$$
\boldsymbol{B}_{k+1}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right)=\boldsymbol{f}\left(\boldsymbol{x}_{k+1}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{k}\right)
$$

- In practice, factorization of \boldsymbol{B}_{k} is updated instead of updating \boldsymbol{B}_{k} directly, so total cost per iteration is only $\mathcal{O}\left(n^{2}\right)$

Example: Broyden's Method

- Use Broyden's method to solve nonlinear system

$$
\boldsymbol{f}(\boldsymbol{x})=\left[\begin{array}{l}
x_{1}+2 x_{2}-2 \\
x_{1}^{2}+4 x_{2}^{2}-4
\end{array}\right]=\mathbf{0}
$$

- If $\boldsymbol{x}_{0}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$, then $\boldsymbol{f}\left(x_{0}\right)=\left[\begin{array}{ll}3 & 13\end{array}\right]^{T}$, and we choose

$$
\boldsymbol{B}_{0}=\boldsymbol{J}_{f}\left(\boldsymbol{x}_{0}\right)=\left[\begin{array}{rr}
1 & 2 \\
2 & 16
\end{array}\right]
$$

- Solving system

$$
\left[\begin{array}{rr}
1 & 2 \\
2 & 16
\end{array}\right] \boldsymbol{s}_{0}=\left[\begin{array}{r}
-3 \\
-13
\end{array}\right]
$$

$$
\text { gives } \boldsymbol{s}_{0}=\left[\begin{array}{l}
-1.83 \\
-0.58
\end{array}\right], \quad \text { so } \quad \boldsymbol{x}_{1}=\boldsymbol{x}_{0}+\boldsymbol{s}_{0}=\left[\begin{array}{r}
-0.83 \\
1.42
\end{array}\right]
$$

Example, continued

- Evaluating at new point \boldsymbol{x}_{1} gives $\boldsymbol{f}\left(\boldsymbol{x}_{1}\right)=\left[\begin{array}{c}0 \\ 4.72\end{array}\right]$, so

$$
\boldsymbol{y}_{0}=\boldsymbol{f}\left(\boldsymbol{x}_{1}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)=\left[\begin{array}{c}
-3 \\
-8.28
\end{array}\right]
$$

- From updating formula, we obtain

$$
\boldsymbol{B}_{1}=\left[\begin{array}{rr}
1 & 2 \\
2 & 16
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
-2.34 & -0.74
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-0.34 & 15.3
\end{array}\right]
$$

- Solving system

$$
\left[\begin{array}{cc}
1 & 2 \\
-0.34 & 15.3
\end{array}\right] \boldsymbol{s}_{1}=\left[\begin{array}{c}
0 \\
-4.72
\end{array}\right]
$$

$$
\text { gives } s_{1}=\left[\begin{array}{r}
0.59 \\
-0.30
\end{array}\right], \quad \text { so } \quad x_{2}=x_{1}+s_{1}=\left[\begin{array}{r}
-0.24 \\
1.120
\end{array}\right]
$$

Example, continued

- Evaluating at new point x_{2} gives $\boldsymbol{f}\left(x_{2}\right)=\left[\begin{array}{c}0 \\ 1.08\end{array}\right]$, so

$$
\boldsymbol{y}_{1}=\boldsymbol{f}\left(\boldsymbol{x}_{2}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{1}\right)=\left[\begin{array}{c}
0 \\
-3.64
\end{array}\right]
$$

- From updating formula, we obtain

$$
\boldsymbol{B}_{2}=\left[\begin{array}{cc}
1 & 2 \\
-0.34 & 15.3
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1.46 & -0.73
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
1.12 & 14.5
\end{array}\right]
$$

- Iterations continue until convergence to solution $\boldsymbol{x}^{*}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Robust Newton-Like Methods

- Newton's method and its variants may fail to converge when started far from solution
- Safeguards can enlarge region of convergence of Newton-like methods
- Simplest precaution is damped Newton method, in which new iterate is

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{s}_{k}
$$

where \boldsymbol{s}_{k} is Newton (or Newton-like) step and α_{k} is scalar parameter chosen to ensure progress toward solution

- Parameter α_{k} reduces Newton step when it is too large, but $\alpha_{k}=1$ suffices near solution and still yields fast asymptotic convergence rate

Trust-Region Methods

- Another approach is to maintain estimate of trust region where Taylor series approximation, upon which Newton's method is based, is sufficiently accurate for resulting computed step to be reliable
- Adjusting size of trust region to constrain step size when necessary usually enables progress toward solution even starting far away, yet still permits rapid converge once near solution
- Unlike damped Newton method, trust region method may modify direction as well as length of Newton step
- More details on this approach will be given in Chapter 6

Summary - Solving Nonlinear Equations

- Methods for solving nonlinear equations in 1D include safe but slow methods, such as interval bisection, and fast but risky methods, such as Newton or secant
- Hybrid methods combine best features of both types of methods to achieve rapid but still guaranteed convergence
- Safe methods do not generalize readily to n dimensions, but Newton and secant do, and they maintain their rapid asymptotic convergence
- Secant updating methods (Broyden) significantly reduce overhead of Newton's method while still converging superlinearly
- Line search or trust region strategy can improve robustness of Newton-like methods

[^0]: ${ }^{\dagger}$ Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright © 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

