
CS 450 – Numerical Analysis

Chapter 5: Nonlinear Equations †

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

heath@illinois.edu

January 28, 2019

†Lecture slides based on the textbook Scientific Computing: An Introductory
Survey by Michael T. Heath, copyright c© 2018 by the Society for Industrial and
Applied Mathematics. http://www.siam.org/books/cl80

http://www.siam.org/books/cl80

2

Nonlinear Equations

3

Nonlinear Equations

I Given function f , we seek value x for which

f (x) = 0

I Solution x is root of equation, or zero of function f

I So problem is known as root finding or zero finding

4

Nonlinear Equations

Two important cases

I Single nonlinear equation in one unknown, where

f : R→ R

Solution is scalar x for which f (x) = 0

I System of n coupled nonlinear equations in n unknowns, where

f : Rn → Rn

Solution is n-vector x for which all components of f are zero
simultaneously, f (x) = 0

5

Examples: Nonlinear Equations

I Example of nonlinear equation in one dimension

x2 − 4 sin(x) = 0

for which x = 1.9 is one approximate solution

I Example of system of nonlinear equations in two dimensions

x21 − x2 + 0.25 = 0

−x1 + x22 + 0.25 = 0

for which x =
[
0.5 0.5

]T
is solution vector

6

Systems of Nonlinear Equations

Solving systems of nonlinear equations is much more difficult than 1D
case because

I Wider variety of behavior is possible, so determining existence and
number of solutions or good starting guess is much more complex

I There is no simple way, in general, to guarantee convergence to
desired solution or to bracket solution to produce absolutely safe
method

I Computational overhead increases rapidly with dimension of problem

7

Existence, Uniqueness, and Conditioning

8

Existence and Uniqueness

I Existence and uniqueness of solutions are more complicated for
nonlinear equations than for linear equations

I For function f : R→ R, bracket is interval [a, b] for which sign of f
differs at endpoints

I If f is continuous and sign(f (a)) 6= sign(f (b)), then Intermediate
Value Theorem implies there is x∗ ∈ [a, b] such that f (x∗) = 0

I There is no simple analog for n dimensions

9

Examples: One Dimension

Nonlinear equations can have any number of solutions

I exp(x) + 1 = 0 has no solution

I exp(−x)− x = 0 has one solution

I x2 − 4 sin(x) = 0 has two solutions

I x3 + 6x2 + 11x − 6 = 0 has three solutions

I sin(x) = 0 has infinitely many solutions

10

Example: Systems in Two Dimensions
x21 − x2 + γ = 0

−x1 + x22 + γ = 0

11

Multiplicity

I If f (x∗) = f ′(x∗) = f ′′(x∗) = · · · = f (m−1)(x∗) = 0 but
f (m)(x∗) 6= 0 (i.e., mth derivative is lowest derivative of f that does
not vanish at x∗), then root x∗ has multiplicity m

I If m = 1 (f (x∗) = 0 and f ′(x∗) 6= 0), then x∗ is simple root

12

Sensitivity and Conditioning

I Conditioning of root finding problem is opposite to that for
evaluating function

I Absolute condition number of root finding problem for root x∗ of
f : R→ R is 1/|f ′(x∗)|

I Root is ill-conditioned if tangent line is nearly horizontal

I In particular, multiple root (m > 1) is ill-conditioned

I Absolute condition number of root finding problem for root x∗ of
f : Rn → Rn is ‖J−1f (x∗)‖, where Jf is Jacobian matrix of f ,

{Jf (x)}ij = ∂fi (x)/∂xj

I Root is ill-conditioned if Jacobian matrix is nearly singular

13

Sensitivity and Conditioning

14

Sensitivity and Conditioning

I What do we mean by approximate solution x̂ to nonlinear system,

‖f (x̂)‖ ≈ 0 or ‖x̂ − x∗‖ ≈ 0 ?

I First corresponds to “small residual,” second measures closeness to
(usually unknown) true solution x∗

I Solution criteria are not necessarily “small” simultaneously

I Small residual implies accurate solution only if problem is
well-conditioned

15

Convergence of Iterative Methods

16

Convergence Rate

I For general iterative methods, define error at iteration k by

ek = xk − x∗

where xk is approximate solution and x∗ is true solution

I For methods that maintain interval known to contain solution,
rather than specific approximate value for solution, take error to be
length of interval containing solution

I Sequence converges with rate r if

lim
k→∞

‖ek+1‖
‖ek‖r

= C

for some finite nonzero constant C

17

Convergence Rate, continued

Some particular cases of interest

I r = 1: linear (C < 1)

I r > 1: superlinear

I r = 2: quadratic

Convergence Digits gained
rate per iteration
linear constant
superlinear increasing
quadratic double

18

Bisection Method in 1D

19

Interval Bisection Method

Bisection method begins with initial bracket and repeatedly halves its
length until solution has been isolated as accurately as desired

while ((b − a) > tol) do
m = a + (b − a)/2
if sign(f (a)) = sign(f (m)) then

a = m
else

b = m
end

end

〈 interactive example 〉

20

Example: Bisection Method

f (x) = x2 − 4 sin(x) = 0

a f (a) b f (b)
1.000000 −2.365884 3.000000 8.435520
1.000000 −2.365884 2.000000 0.362810
1.500000 −1.739980 2.000000 0.362810
1.750000 −0.873444 2.000000 0.362810
1.875000 −0.300718 2.000000 0.362810
1.875000 −0.300718 1.937500 0.019849
1.906250 −0.143255 1.937500 0.019849
1.921875 −0.062406 1.937500 0.019849
1.929688 −0.021454 1.937500 0.019849
1.933594 −0.000846 1.937500 0.019849
1.933594 −0.000846 1.935547 0.009491
1.933594 −0.000846 1.934570 0.004320
1.933594 −0.000846 1.934082 0.001736
1.933594 −0.000846 1.933838 0.000445

21

Bisection Method, continued

I Bisection method makes no use of magnitudes of function values,
only their signs

I Bisection is certain to converge, but does so slowly

I At each iteration, length of interval containing solution reduced by
half, convergence rate is linear, with r = 1 and C = 0.5

I One bit of accuracy is gained in approximate solution for each
iteration of bisection

I Given starting interval [a, b], length of interval after k iterations is
(b − a)/2k , so achieving error tolerance of tol requires⌈

log2

(
b − a

tol

)⌉
iterations, regardless of function f involved

22

Fixed-Point Iteration in 1D

23

Fixed-Point Problems

I Fixed point of given function g : R→ R is value x such that

x = g(x)

I Many iterative methods for solving nonlinear equations use
fixed-point iteration scheme of form

xk+1 = g(xk)

where fixed points for g are solutions for f (x) = 0

I Also called functional iteration, since function g is applied
repeatedly to initial starting value x0

I For given equation f (x) = 0, there may be many equivalent
fixed-point problems x = g(x) with different choices for g

24

Example: Fixed-Point Problems

If f (x) = x2 − x − 2, then fixed points of each of functions

I g(x) = x2 − 2

I g(x) =
√
x + 2

I g(x) = 1 + 2/x

I g(x) =
x2 + 2

2x − 1

are solutions to equation f (x) = 0

25

Example: Fixed-Point Problems

26

Example: Fixed-Point Iteration

27

Example: Fixed-Point Iteration

28

Convergence of Fixed-Point Iteration

I If x∗ = g(x∗) and |g ′(x∗)| < 1, then there is interval containing x∗

such that iteration
xk+1 = g(xk)

converges to x∗ if started within that interval

I If |g ′(x∗)| > 1, then iterative scheme diverges

I Asymptotic convergence rate of fixed-point iteration is usually linear,
with constant C = |g ′(x∗)|

I But if g ′(x∗) = 0, then convergence rate is at least quadratic

〈 interactive example 〉

29

Newton’s Method in 1D

30

Newton’s Method

I Truncated Taylor series

f (x + h) ≈ f (x) + f ′(x)h

is linear function of h approximating f near x

I Replace nonlinear function f by this linear function, whose zero is
h = −f (x)/f ′(x)

I Zeros of original function and linear approximation are not identical,
so repeat process, giving Newton’s method

xk+1 = xk −
f (xk)

f ′(xk)

31

Newton’s Method, continued

Newton’s method approximates nonlinear function f near xk by tangent
line at f (xk)

32

Example: Newton’s Method
I Use Newton’s method to find root of

f (x) = x2 − 4 sin(x) = 0

I Derivative is
f ′(x) = 2x − 4 cos(x)

so iteration scheme is

xk+1 = xk −
x2k − 4 sin(xk)

2xk − 4 cos(xk)

I Taking x0 = 3 as starting value, we obtain

x f (x) f ′(x) h
3.000000 8.435520 9.959970 −0.846942
2.153058 1.294772 6.505771 −0.199019
1.954039 0.108438 5.403795 −0.020067
1.933972 0.001152 5.288919 −0.000218
1.933754 0.000000 5.287670 0.000000

33

Convergence of Newton’s Method

I Newton’s method transforms nonlinear equation f (x) = 0 into
fixed-point problem x = g(x), where

g(x) = x − f (x)/f ′(x)

and hence
g ′(x) = f (x)f ′′(x)/(f ′(x))2

I If x∗ is simple root (i.e., f (x∗) = 0 and f ′(x∗) 6= 0), then g ′(x∗) = 0

I Convergence rate of Newton’s method for simple root is therefore
quadratic (r = 2)

I But iterations must start close enough to root to converge

〈 interactive example 〉

34

Newton’s Method, continued

For multiple root, convergence rate of Newton’s method is only linear,
with constant C = 1− (1/m), where m is multiplicity

k f (x) = x2 − 1 f (x) = x2 − 2x + 1
0 2.0 2.0
1 1.25 1.5
2 1.025 1.25
3 1.0003 1.125
4 1.00000005 1.0625
5 1.0 1.03125

35

Interpolation Methods in 1D

36

Secant Method

I For each iteration, Newton’s method requires evaluation of both
function and its derivative, which may be inconvenient or expensive

I In secant method, derivative is approximated by finite difference
using two successive iterates, so iteration becomes

xk+1 = xk − f (xk)
xk − xk−1

f (xk)− f (xk−1)

I Convergence rate of secant method is normally superlinear, with
r ≈ 1.618

37

Secant Method, continued

Secant method approximates nonlinear function f by secant line through
previous two iterates

〈 interactive example 〉

38

Example: Secant Method

I Use secant method to find root of

f (x) = x2 − 4 sin(x) = 0

I Taking x0 = 1 and x1 = 3 as starting guesses, we obtain

x f (x) h
1.000000 −2.365884
3.000000 8.435520 −1.561930
1.438070 −1.896774 0.286735
1.724805 −0.977706 0.305029
2.029833 0.534305 −0.107789
1.922044 −0.061523 0.011130
1.933174 −0.003064 0.000583
1.933757 0.000019 −0.000004
1.933754 0.000000 0.000000

39

Higher-Degree Interpolation

I Secant method uses linear interpolation to approximate function
whose zero is sought

I Higher convergence rate can be obtained by using higher-degree
polynomial interpolation

I For example, quadratic interpolation (Muller’s method) has
superlinear convergence rate with r ≈ 1.839

I Unfortunately, using higher degree polynomial also has
disadvantages

I interpolating polynomial may not have real roots

I roots may not be easy to compute

I choice of root to use as next iterate may not be obvious

40

Inverse Interpolation

I Good alternative is inverse interpolation, where xk are interpolated
as function of yk = f (xk) by polynomial p(y), so next approximate
solution is p(0)

I Most commonly used for root finding is inverse quadratic
interpolation

41

Inverse Quadratic Interpolation

I Given approximate solution values a, b, c , with function values fa, fb,
fc , next approximate solution found by fitting quadratic polynomial
to a, b, c as function of fa, fb, fc , then evaluating polynomial at 0

I Based on nontrivial derivation using Lagrange interpolation, we
compute

u = fb/fc , v = fb/fa, w = fa/fc

p = v(w(u − w)(c − b)− (1− u)(b − a))

q = (w − 1)(u − 1)(v − 1)

then new approximate solution is b + p/q

I Convergence rate is normally r ≈ 1.839

〈 interactive example 〉

42

Example: Inverse Quadratic Interpolation

I Use inverse quadratic interpolation to find root of

f (x) = x2 − 4 sin(x) = 0

I Taking x = 1, 2, and 3 as starting values, we obtain

x f (x) h
1.000000 −2.365884
2.000000 0.362810
3.000000 8.435520
1.886318 −0.244343 −0.113682
1.939558 0.030786 0.053240
1.933742 −0.000060 −0.005815
1.933754 0.000000 0.000011
1.933754 0.000000 0.000000

43

Linear Fractional Interpolation

I Interpolation using rational fraction of form

φ(x) =
x − u

vx − w

is especially useful for finding zeros of functions having horizontal or
vertical asymptotes

I φ has zero at x = u, vertical asymptote at x = w/v , and horizontal
asymptote at y = 1/v

I Given approximate solution values a, b, c , with function values fa,
fb, fc , next approximate solution is c + h, where

h =
(a− c)(b − c)(fa − fb)fc

(a− c)(fc − fb)fa − (b − c)(fc − fa)fb

I Convergence rate is normally r ≈ 1.839, same as for quadratic
interpolation (inverse or regular)

44

Example: Linear Fractional Interpolation

I Use linear fractional interpolation to find root of

f (x) = x2 − 4 sin(x) = 0

I Taking x = 1, 2, and 3 as starting values, we obtain

x f (x) h
1.000000 −2.365884
2.000000 0.362810
3.000000 8.435520
1.906953 −0.139647 −1.093047
1.933351 −0.002131 0.026398
1.933756 0.000013 −0.000406
1.933754 0.000000 −0.000003

〈 interactive example 〉

45

Hybrid Methods

46

Safeguarded Methods

I Rapidly convergent methods for solving nonlinear equations may not
converge unless started close to solution, but safe methods are slow

I Hybrid methods combine features of both types of methods to
achieve both speed and reliability

I Use rapidly convergent method, but maintain bracket around
solution

I If next approximate solution given by fast method falls outside
bracketing interval, perform one iteration of safe method, such as
bisection

47

Safeguarded Methods, continued

I Fast method can then be tried again on smaller interval with greater
chance of success

I Ultimately, convergence rate of fast method should prevail

I Hybrid approach seldom does worse than safe method, and usually
does much better

I Popular combination is bisection and inverse quadratic interpolation,
for which no derivatives required

48

Zeros of Polynomials

I For polynomial p(x) of degree n, one may want to find all of its n
zeros, which may be complex even if coefficients are real

I Several approaches are available

I Use root-finding method such as Newton’s or Muller’s method to
find one root, deflate it out, and repeat

I Form companion matrix of polynomial and use eigenvalue routine to
compute all its eigenvalues

I Use method designed specifically for finding all roots of polynomial,
such as Jenkins-Traub

49

Newton’s Method for Nonlinear Systems

50

Fixed-Point Iteration

I Fixed-point problem for g : Rn → Rn is to find vector x such that

x = g(x)

I Corresponding fixed-point iteration is

xk+1 = g(xk)

I If ρ(G (x∗)) < 1, where ρ is spectral radius and G (x) is Jacobian
matrix of g evaluated at x , then fixed-point iteration converges if
started close enough to solution

I Convergence rate is normally linear, with constant C given by
spectral radius ρ(G (x∗))

I If G (x∗) = O, then convergence rate is at least quadratic

51

Newton’s Method

I In n dimensions, Newton’s method has form

xk+1 = xk − J(xk)−1f (xk)

where J(x) is Jacobian matrix of f ,

{J(x)}ij =
∂fi (x)

∂xj

I In practice, we do not explicitly invert J(xk), but instead solve linear
system

J(xk)sk = −f (xk)

for Newton step sk , then take as next iterate

xk+1 = xk + sk

52

Example: Newton’s Method

I Use Newton’s method to solve nonlinear system

f (x) =

[
x1 + 2x2 − 2
x21 + 4x22 − 4

]
= 0

I Jacobian matrix is Jf (x) =

[
1 2

2x1 8x2

]
I If we take x0 =

[
1 2

]T
, then

f (x0) =

[
3

13

]
, Jf (x0) =

[
1 2
2 16

]

I Solving system

[
1 2
2 16

]
s0 =

[
−3
−13

]
gives s0 =

[
−1.83
−0.58

]
, so

x1 = x0 + s0 =
[
−0.83 1.42

]T

53

Example, continued

I Evaluating at new point,

f (x1) =

[
0

4.72

]
, Jf (x1) =

[
1 2

−1.67 11.3

]

I Solving system

[
1 2

−1.67 11.3

]
s1 =

[
0

−4.72

]
gives

s1 =
[
0.64 −0.32

]T
, so x2 = x1 + s1 =

[
−0.19 1.10

]T
I Evaluating at new point,

f (x2) =

[
0

0.83

]
, Jf (x2) =

[
1 2

−0.38 8.76

]
I Iterations eventually convergence to solution x∗ =

[
0 1

]T
〈 interactive example 〉

54

Convergence of Newton’s Method

I Differentiating corresponding fixed-point operator

g(x) = x − J(x)−1f (x)

and evaluating at solution x∗ gives

G (x∗) = I − (J(x∗)−1J(x∗) +
n∑

i=1

fi (x∗)Hi (x∗)) = O

where Hi (x) is component matrix of derivative of J(x)−1

I Convergence rate of Newton’s method for nonlinear systems is
normally quadratic, provided Jacobian matrix J(x∗) is nonsingular

I But it must be started close enough to solution to converge

55

Cost of Newton’s Method

Cost per iteration of Newton’s method for dense problem in n dimensions
is substantial

I Computing Jacobian matrix costs n2 scalar function evaluations

I Solving linear system costs O(n3) operations

56

Secant Updating Methods

57

Secant Updating Methods

I Secant updating methods reduce cost by

I Using function values at successive iterates to build approximate
Jacobian and avoiding explicit evaluation of derivatives

I Updating factorization of approximate Jacobian rather than
refactoring it each iteration

I Most secant updating methods have superlinear but not quadratic
convergence rate

I Secant updating methods often cost less overall than Newton’s
method because of lower cost per iteration

58

Broyden’s Method
I Broyden’s method is typical secant updating method

I Beginning with initial guess x0 for solution and initial approximate
Jacobian B0, following steps are repeated until convergence

x0 = initial guess
B0 = initial Jacobian approximation
for k = 0, 1, 2, . . .

Solve Bk sk = −f (xk) for sk
xk+1 = xk + sk
yk = f (xk+1)− f (xk)
Bk+1 = Bk + ((yk − Bksk)sTk)/(sTk sk)

end

I Motivation for formula for Bk+1 is to make least change to Bk

subject to satisfying secant equation

Bk+1(xk+1 − xk) = f (xk+1)− f (xk)

I In practice, factorization of Bk is updated instead of updating Bk

directly, so total cost per iteration is only O(n2)

59

Example: Broyden’s Method

I Use Broyden’s method to solve nonlinear system

f (x) =

[
x1 + 2x2 − 2
x21 + 4x22 − 4

]
= 0

I If x0 =
[
1 2

]T
, then f (x0) =

[
3 13

]T
, and we choose

B0 = Jf (x0) =

[
1 2
2 16

]
I Solving system [

1 2
2 16

]
s0 =

[
−3
−13

]
gives s0 =

[
−1.83
−0.58

]
, so x1 = x0 + s0 =

[
−0.83

1.42

]

60

Example, continued

I Evaluating at new point x1 gives f (x1) =

[
0

4.72

]
, so

y0 = f (x1)− f (x0) =

[
−3
−8.28

]
I From updating formula, we obtain

B1 =

[
1 2
2 16

]
+

[
0 0

−2.34 −0.74

]
=

[
1 2

−0.34 15.3

]
I Solving system [

1 2
−0.34 15.3

]
s1 =

[
0

−4.72

]
gives s1 =

[
0.59
−0.30

]
, so x2 = x1 + s1 =

[
−0.24
1.120

]

61

Example, continued

I Evaluating at new point x2 gives f (x2) =

[
0

1.08

]
, so

y1 = f (x2)− f (x1) =

[
0

−3.64

]
I From updating formula, we obtain

B2 =

[
1 2

−0.34 15.3

]
+

[
0 0

1.46 −0.73

]
=

[
1 2

1.12 14.5

]

I Iterations continue until convergence to solution x∗ =

[
0
1

]

〈 interactive example 〉

62

Robust Newton-Like Methods

I Newton’s method and its variants may fail to converge when started
far from solution

I Safeguards can enlarge region of convergence of Newton-like
methods

I Simplest precaution is damped Newton method, in which new
iterate is

xk+1 = xk + αksk

where sk is Newton (or Newton-like) step and αk is scalar parameter
chosen to ensure progress toward solution

I Parameter αk reduces Newton step when it is too large, but αk = 1
suffices near solution and still yields fast asymptotic convergence rate

63

Trust-Region Methods

I Another approach is to maintain estimate of trust region where
Taylor series approximation, upon which Newton’s method is based,
is sufficiently accurate for resulting computed step to be reliable

I Adjusting size of trust region to constrain step size when necessary
usually enables progress toward solution even starting far away, yet
still permits rapid converge once near solution

I Unlike damped Newton method, trust region method may modify
direction as well as length of Newton step

I More details on this approach will be given in Chapter 6

64

Summary – Solving Nonlinear Equations

I Methods for solving nonlinear equations in 1D include safe but slow
methods, such as interval bisection, and fast but risky methods,
such as Newton or secant

I Hybrid methods combine best features of both types of methods to
achieve rapid but still guaranteed convergence

I Safe methods do not generalize readily to n dimensions, but Newton
and secant do, and they maintain their rapid asymptotic
convergence

I Secant updating methods (Broyden) significantly reduce overhead of
Newton’s method while still converging superlinearly

I Line search or trust region strategy can improve robustness of
Newton-like methods

	Nonlinear Equations
	Existence, Uniqueness, and Conditioning
	Convergence of Iterative Methods
	Bisection Method in 1D
	Fixed-Point Iteration in 1D
	Newton's Method in 1D
	Interpolation Methods in 1D
	Hybrid Methods
	Newton's Method for Nonlinear Systems
	Secant Updating Methods

