
CS 450 – Numerical Analysis

Chapter 5: Nonlinear Equations †

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign

heath@illinois.edu

January 28, 2019

†Lecture slides based on the textbook Scientific Computing: An Introductory
Survey by Michael T. Heath, copyright c© 2018 by the Society for Industrial and
Applied Mathematics. http://www.siam.org/books/cl80

http://www.siam.org/books/cl80


2

Nonlinear Equations
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Nonlinear Equations

I Given function f , we seek value x for which

f (x) = 0

I Solution x is root of equation, or zero of function f

I So problem is known as root finding or zero finding
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Nonlinear Equations

Two important cases

I Single nonlinear equation in one unknown, where

f : R→ R

Solution is scalar x for which f (x) = 0

I System of n coupled nonlinear equations in n unknowns, where

f : Rn → Rn

Solution is n-vector x for which all components of f are zero
simultaneously, f (x) = 0
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Examples: Nonlinear Equations

I Example of nonlinear equation in one dimension

x2 − 4 sin(x) = 0

for which x = 1.9 is one approximate solution

I Example of system of nonlinear equations in two dimensions

x21 − x2 + 0.25 = 0

−x1 + x22 + 0.25 = 0

for which x =
[
0.5 0.5

]T
is solution vector
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Systems of Nonlinear Equations

Solving systems of nonlinear equations is much more difficult than 1D
case because

I Wider variety of behavior is possible, so determining existence and
number of solutions or good starting guess is much more complex

I There is no simple way, in general, to guarantee convergence to
desired solution or to bracket solution to produce absolutely safe
method

I Computational overhead increases rapidly with dimension of problem
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Existence, Uniqueness, and Conditioning
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Existence and Uniqueness

I Existence and uniqueness of solutions are more complicated for
nonlinear equations than for linear equations

I For function f : R→ R, bracket is interval [a, b] for which sign of f
differs at endpoints

I If f is continuous and sign(f (a)) 6= sign(f (b)), then Intermediate
Value Theorem implies there is x∗ ∈ [a, b] such that f (x∗) = 0

I There is no simple analog for n dimensions
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Examples: One Dimension

Nonlinear equations can have any number of solutions

I exp(x) + 1 = 0 has no solution

I exp(−x)− x = 0 has one solution

I x2 − 4 sin(x) = 0 has two solutions

I x3 + 6x2 + 11x − 6 = 0 has three solutions

I sin(x) = 0 has infinitely many solutions
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Example: Systems in Two Dimensions
x21 − x2 + γ = 0

−x1 + x22 + γ = 0
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Multiplicity

I If f (x∗) = f ′(x∗) = f ′′(x∗) = · · · = f (m−1)(x∗) = 0 but
f (m)(x∗) 6= 0 (i.e., mth derivative is lowest derivative of f that does
not vanish at x∗), then root x∗ has multiplicity m

I If m = 1 (f (x∗) = 0 and f ′(x∗) 6= 0), then x∗ is simple root
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Sensitivity and Conditioning

I Conditioning of root finding problem is opposite to that for
evaluating function

I Absolute condition number of root finding problem for root x∗ of
f : R→ R is 1/|f ′(x∗)|

I Root is ill-conditioned if tangent line is nearly horizontal

I In particular, multiple root (m > 1) is ill-conditioned

I Absolute condition number of root finding problem for root x∗ of
f : Rn → Rn is ‖J−1f (x∗)‖, where Jf is Jacobian matrix of f ,

{Jf (x)}ij = ∂fi (x)/∂xj

I Root is ill-conditioned if Jacobian matrix is nearly singular
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Sensitivity and Conditioning
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Sensitivity and Conditioning

I What do we mean by approximate solution x̂ to nonlinear system,

‖f (x̂)‖ ≈ 0 or ‖x̂ − x∗‖ ≈ 0 ?

I First corresponds to “small residual,” second measures closeness to
(usually unknown) true solution x∗

I Solution criteria are not necessarily “small” simultaneously

I Small residual implies accurate solution only if problem is
well-conditioned
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Convergence of Iterative Methods
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Convergence Rate

I For general iterative methods, define error at iteration k by

ek = xk − x∗

where xk is approximate solution and x∗ is true solution

I For methods that maintain interval known to contain solution,
rather than specific approximate value for solution, take error to be
length of interval containing solution

I Sequence converges with rate r if

lim
k→∞

‖ek+1‖
‖ek‖r

= C

for some finite nonzero constant C
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Convergence Rate, continued

Some particular cases of interest

I r = 1: linear (C < 1)

I r > 1: superlinear

I r = 2: quadratic

Convergence Digits gained
rate per iteration
linear constant
superlinear increasing
quadratic double
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Bisection Method in 1D
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Interval Bisection Method

Bisection method begins with initial bracket and repeatedly halves its
length until solution has been isolated as accurately as desired

while ((b − a) > tol) do
m = a + (b − a)/2
if sign(f (a)) = sign(f (m)) then

a = m
else

b = m
end

end

〈 interactive example 〉
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Example: Bisection Method

f (x) = x2 − 4 sin(x) = 0

a f (a) b f (b)
1.000000 −2.365884 3.000000 8.435520
1.000000 −2.365884 2.000000 0.362810
1.500000 −1.739980 2.000000 0.362810
1.750000 −0.873444 2.000000 0.362810
1.875000 −0.300718 2.000000 0.362810
1.875000 −0.300718 1.937500 0.019849
1.906250 −0.143255 1.937500 0.019849
1.921875 −0.062406 1.937500 0.019849
1.929688 −0.021454 1.937500 0.019849
1.933594 −0.000846 1.937500 0.019849
1.933594 −0.000846 1.935547 0.009491
1.933594 −0.000846 1.934570 0.004320
1.933594 −0.000846 1.934082 0.001736
1.933594 −0.000846 1.933838 0.000445
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Bisection Method, continued

I Bisection method makes no use of magnitudes of function values,
only their signs

I Bisection is certain to converge, but does so slowly

I At each iteration, length of interval containing solution reduced by
half, convergence rate is linear, with r = 1 and C = 0.5

I One bit of accuracy is gained in approximate solution for each
iteration of bisection

I Given starting interval [a, b], length of interval after k iterations is
(b − a)/2k , so achieving error tolerance of tol requires⌈

log2

(
b − a

tol

)⌉
iterations, regardless of function f involved
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Fixed-Point Iteration in 1D



23

Fixed-Point Problems

I Fixed point of given function g : R→ R is value x such that

x = g(x)

I Many iterative methods for solving nonlinear equations use
fixed-point iteration scheme of form

xk+1 = g(xk)

where fixed points for g are solutions for f (x) = 0

I Also called functional iteration, since function g is applied
repeatedly to initial starting value x0

I For given equation f (x) = 0, there may be many equivalent
fixed-point problems x = g(x) with different choices for g
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Example: Fixed-Point Problems

If f (x) = x2 − x − 2, then fixed points of each of functions

I g(x) = x2 − 2

I g(x) =
√
x + 2

I g(x) = 1 + 2/x

I g(x) =
x2 + 2

2x − 1

are solutions to equation f (x) = 0
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Example: Fixed-Point Problems
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Example: Fixed-Point Iteration



27

Example: Fixed-Point Iteration
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Convergence of Fixed-Point Iteration

I If x∗ = g(x∗) and |g ′(x∗)| < 1, then there is interval containing x∗

such that iteration
xk+1 = g(xk)

converges to x∗ if started within that interval

I If |g ′(x∗)| > 1, then iterative scheme diverges

I Asymptotic convergence rate of fixed-point iteration is usually linear,
with constant C = |g ′(x∗)|

I But if g ′(x∗) = 0, then convergence rate is at least quadratic

〈 interactive example 〉
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Newton’s Method in 1D



30

Newton’s Method

I Truncated Taylor series

f (x + h) ≈ f (x) + f ′(x)h

is linear function of h approximating f near x

I Replace nonlinear function f by this linear function, whose zero is
h = −f (x)/f ′(x)

I Zeros of original function and linear approximation are not identical,
so repeat process, giving Newton’s method

xk+1 = xk −
f (xk)

f ′(xk)
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Newton’s Method, continued

Newton’s method approximates nonlinear function f near xk by tangent
line at f (xk)
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Example: Newton’s Method
I Use Newton’s method to find root of

f (x) = x2 − 4 sin(x) = 0

I Derivative is
f ′(x) = 2x − 4 cos(x)

so iteration scheme is

xk+1 = xk −
x2k − 4 sin(xk)

2xk − 4 cos(xk)

I Taking x0 = 3 as starting value, we obtain

x f (x) f ′(x) h
3.000000 8.435520 9.959970 −0.846942
2.153058 1.294772 6.505771 −0.199019
1.954039 0.108438 5.403795 −0.020067
1.933972 0.001152 5.288919 −0.000218
1.933754 0.000000 5.287670 0.000000
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Convergence of Newton’s Method

I Newton’s method transforms nonlinear equation f (x) = 0 into
fixed-point problem x = g(x), where

g(x) = x − f (x)/f ′(x)

and hence
g ′(x) = f (x)f ′′(x)/(f ′(x))2

I If x∗ is simple root (i.e., f (x∗) = 0 and f ′(x∗) 6= 0), then g ′(x∗) = 0

I Convergence rate of Newton’s method for simple root is therefore
quadratic (r = 2)

I But iterations must start close enough to root to converge

〈 interactive example 〉
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Newton’s Method, continued

For multiple root, convergence rate of Newton’s method is only linear,
with constant C = 1− (1/m), where m is multiplicity

k f (x) = x2 − 1 f (x) = x2 − 2x + 1
0 2.0 2.0
1 1.25 1.5
2 1.025 1.25
3 1.0003 1.125
4 1.00000005 1.0625
5 1.0 1.03125
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Interpolation Methods in 1D
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Secant Method

I For each iteration, Newton’s method requires evaluation of both
function and its derivative, which may be inconvenient or expensive

I In secant method, derivative is approximated by finite difference
using two successive iterates, so iteration becomes

xk+1 = xk − f (xk)
xk − xk−1

f (xk)− f (xk−1)

I Convergence rate of secant method is normally superlinear, with
r ≈ 1.618
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Secant Method, continued

Secant method approximates nonlinear function f by secant line through
previous two iterates

〈 interactive example 〉
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Example: Secant Method

I Use secant method to find root of

f (x) = x2 − 4 sin(x) = 0

I Taking x0 = 1 and x1 = 3 as starting guesses, we obtain

x f (x) h
1.000000 −2.365884
3.000000 8.435520 −1.561930
1.438070 −1.896774 0.286735
1.724805 −0.977706 0.305029
2.029833 0.534305 −0.107789
1.922044 −0.061523 0.011130
1.933174 −0.003064 0.000583
1.933757 0.000019 −0.000004
1.933754 0.000000 0.000000
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Higher-Degree Interpolation

I Secant method uses linear interpolation to approximate function
whose zero is sought

I Higher convergence rate can be obtained by using higher-degree
polynomial interpolation

I For example, quadratic interpolation (Muller’s method) has
superlinear convergence rate with r ≈ 1.839

I Unfortunately, using higher degree polynomial also has
disadvantages

I interpolating polynomial may not have real roots

I roots may not be easy to compute

I choice of root to use as next iterate may not be obvious
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Inverse Interpolation

I Good alternative is inverse interpolation, where xk are interpolated
as function of yk = f (xk) by polynomial p(y), so next approximate
solution is p(0)

I Most commonly used for root finding is inverse quadratic
interpolation
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Inverse Quadratic Interpolation

I Given approximate solution values a, b, c , with function values fa, fb,
fc , next approximate solution found by fitting quadratic polynomial
to a, b, c as function of fa, fb, fc , then evaluating polynomial at 0

I Based on nontrivial derivation using Lagrange interpolation, we
compute

u = fb/fc , v = fb/fa, w = fa/fc

p = v(w(u − w)(c − b)− (1− u)(b − a))

q = (w − 1)(u − 1)(v − 1)

then new approximate solution is b + p/q

I Convergence rate is normally r ≈ 1.839

〈 interactive example 〉
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Example: Inverse Quadratic Interpolation

I Use inverse quadratic interpolation to find root of

f (x) = x2 − 4 sin(x) = 0

I Taking x = 1, 2, and 3 as starting values, we obtain

x f (x) h
1.000000 −2.365884
2.000000 0.362810
3.000000 8.435520
1.886318 −0.244343 −0.113682
1.939558 0.030786 0.053240
1.933742 −0.000060 −0.005815
1.933754 0.000000 0.000011
1.933754 0.000000 0.000000
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Linear Fractional Interpolation

I Interpolation using rational fraction of form

φ(x) =
x − u

vx − w

is especially useful for finding zeros of functions having horizontal or
vertical asymptotes

I φ has zero at x = u, vertical asymptote at x = w/v , and horizontal
asymptote at y = 1/v

I Given approximate solution values a, b, c , with function values fa,
fb, fc , next approximate solution is c + h, where

h =
(a− c)(b − c)(fa − fb)fc

(a− c)(fc − fb)fa − (b − c)(fc − fa)fb

I Convergence rate is normally r ≈ 1.839, same as for quadratic
interpolation (inverse or regular)
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Example: Linear Fractional Interpolation

I Use linear fractional interpolation to find root of

f (x) = x2 − 4 sin(x) = 0

I Taking x = 1, 2, and 3 as starting values, we obtain

x f (x) h
1.000000 −2.365884
2.000000 0.362810
3.000000 8.435520
1.906953 −0.139647 −1.093047
1.933351 −0.002131 0.026398
1.933756 0.000013 −0.000406
1.933754 0.000000 −0.000003

〈 interactive example 〉
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Hybrid Methods
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Safeguarded Methods

I Rapidly convergent methods for solving nonlinear equations may not
converge unless started close to solution, but safe methods are slow

I Hybrid methods combine features of both types of methods to
achieve both speed and reliability

I Use rapidly convergent method, but maintain bracket around
solution

I If next approximate solution given by fast method falls outside
bracketing interval, perform one iteration of safe method, such as
bisection
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Safeguarded Methods, continued

I Fast method can then be tried again on smaller interval with greater
chance of success

I Ultimately, convergence rate of fast method should prevail

I Hybrid approach seldom does worse than safe method, and usually
does much better

I Popular combination is bisection and inverse quadratic interpolation,
for which no derivatives required
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Zeros of Polynomials

I For polynomial p(x) of degree n, one may want to find all of its n
zeros, which may be complex even if coefficients are real

I Several approaches are available

I Use root-finding method such as Newton’s or Muller’s method to
find one root, deflate it out, and repeat

I Form companion matrix of polynomial and use eigenvalue routine to
compute all its eigenvalues

I Use method designed specifically for finding all roots of polynomial,
such as Jenkins-Traub
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Newton’s Method for Nonlinear Systems
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Fixed-Point Iteration

I Fixed-point problem for g : Rn → Rn is to find vector x such that

x = g(x)

I Corresponding fixed-point iteration is

xk+1 = g(xk)

I If ρ(G (x∗)) < 1, where ρ is spectral radius and G (x) is Jacobian
matrix of g evaluated at x , then fixed-point iteration converges if
started close enough to solution

I Convergence rate is normally linear, with constant C given by
spectral radius ρ(G (x∗))

I If G (x∗) = O, then convergence rate is at least quadratic
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Newton’s Method

I In n dimensions, Newton’s method has form

xk+1 = xk − J(xk)−1f (xk)

where J(x) is Jacobian matrix of f ,

{J(x)}ij =
∂fi (x)

∂xj

I In practice, we do not explicitly invert J(xk), but instead solve linear
system

J(xk)sk = −f (xk)

for Newton step sk , then take as next iterate

xk+1 = xk + sk
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Example: Newton’s Method

I Use Newton’s method to solve nonlinear system

f (x) =

[
x1 + 2x2 − 2
x21 + 4x22 − 4

]
= 0

I Jacobian matrix is Jf (x) =

[
1 2

2x1 8x2

]
I If we take x0 =

[
1 2

]T
, then

f (x0) =

[
3

13

]
, Jf (x0) =

[
1 2
2 16

]

I Solving system

[
1 2
2 16

]
s0 =

[
−3
−13

]
gives s0 =

[
−1.83
−0.58

]
, so

x1 = x0 + s0 =
[
−0.83 1.42

]T
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Example, continued

I Evaluating at new point,

f (x1) =

[
0

4.72

]
, Jf (x1) =

[
1 2

−1.67 11.3

]

I Solving system

[
1 2

−1.67 11.3

]
s1 =

[
0

−4.72

]
gives

s1 =
[
0.64 −0.32

]T
, so x2 = x1 + s1 =

[
−0.19 1.10

]T
I Evaluating at new point,

f (x2) =

[
0

0.83

]
, Jf (x2) =

[
1 2

−0.38 8.76

]
I Iterations eventually convergence to solution x∗ =

[
0 1

]T
〈 interactive example 〉
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Convergence of Newton’s Method

I Differentiating corresponding fixed-point operator

g(x) = x − J(x)−1f (x)

and evaluating at solution x∗ gives

G (x∗) = I − (J(x∗)−1J(x∗) +
n∑

i=1

fi (x∗)Hi (x∗)) = O

where Hi (x) is component matrix of derivative of J(x)−1

I Convergence rate of Newton’s method for nonlinear systems is
normally quadratic, provided Jacobian matrix J(x∗) is nonsingular

I But it must be started close enough to solution to converge
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Cost of Newton’s Method

Cost per iteration of Newton’s method for dense problem in n dimensions
is substantial

I Computing Jacobian matrix costs n2 scalar function evaluations

I Solving linear system costs O(n3) operations
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Secant Updating Methods
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Secant Updating Methods

I Secant updating methods reduce cost by

I Using function values at successive iterates to build approximate
Jacobian and avoiding explicit evaluation of derivatives

I Updating factorization of approximate Jacobian rather than
refactoring it each iteration

I Most secant updating methods have superlinear but not quadratic
convergence rate

I Secant updating methods often cost less overall than Newton’s
method because of lower cost per iteration
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Broyden’s Method
I Broyden’s method is typical secant updating method

I Beginning with initial guess x0 for solution and initial approximate
Jacobian B0, following steps are repeated until convergence

x0 = initial guess
B0 = initial Jacobian approximation
for k = 0, 1, 2, . . .

Solve Bk sk = −f (xk) for sk
xk+1 = xk + sk
yk = f (xk+1)− f (xk)
Bk+1 = Bk + ((yk − Bksk)sTk )/(sTk sk)

end

I Motivation for formula for Bk+1 is to make least change to Bk

subject to satisfying secant equation

Bk+1(xk+1 − xk) = f (xk+1)− f (xk)

I In practice, factorization of Bk is updated instead of updating Bk

directly, so total cost per iteration is only O(n2)
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Example: Broyden’s Method

I Use Broyden’s method to solve nonlinear system

f (x) =

[
x1 + 2x2 − 2
x21 + 4x22 − 4

]
= 0

I If x0 =
[
1 2

]T
, then f (x0) =

[
3 13

]T
, and we choose

B0 = Jf (x0) =

[
1 2
2 16

]
I Solving system [

1 2
2 16

]
s0 =

[
−3
−13

]
gives s0 =

[
−1.83
−0.58

]
, so x1 = x0 + s0 =

[
−0.83

1.42

]
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Example, continued

I Evaluating at new point x1 gives f (x1) =

[
0

4.72

]
, so

y0 = f (x1)− f (x0) =

[
−3
−8.28

]
I From updating formula, we obtain

B1 =

[
1 2
2 16

]
+

[
0 0

−2.34 −0.74

]
=

[
1 2

−0.34 15.3

]
I Solving system [

1 2
−0.34 15.3

]
s1 =

[
0

−4.72

]
gives s1 =

[
0.59
−0.30

]
, so x2 = x1 + s1 =

[
−0.24
1.120

]
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Example, continued

I Evaluating at new point x2 gives f (x2) =

[
0

1.08

]
, so

y1 = f (x2)− f (x1) =

[
0

−3.64

]
I From updating formula, we obtain

B2 =

[
1 2

−0.34 15.3

]
+

[
0 0

1.46 −0.73

]
=

[
1 2

1.12 14.5

]

I Iterations continue until convergence to solution x∗ =

[
0
1

]

〈 interactive example 〉
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Robust Newton-Like Methods

I Newton’s method and its variants may fail to converge when started
far from solution

I Safeguards can enlarge region of convergence of Newton-like
methods

I Simplest precaution is damped Newton method, in which new
iterate is

xk+1 = xk + αksk

where sk is Newton (or Newton-like) step and αk is scalar parameter
chosen to ensure progress toward solution

I Parameter αk reduces Newton step when it is too large, but αk = 1
suffices near solution and still yields fast asymptotic convergence rate



63

Trust-Region Methods

I Another approach is to maintain estimate of trust region where
Taylor series approximation, upon which Newton’s method is based,
is sufficiently accurate for resulting computed step to be reliable

I Adjusting size of trust region to constrain step size when necessary
usually enables progress toward solution even starting far away, yet
still permits rapid converge once near solution

I Unlike damped Newton method, trust region method may modify
direction as well as length of Newton step

I More details on this approach will be given in Chapter 6
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Summary – Solving Nonlinear Equations

I Methods for solving nonlinear equations in 1D include safe but slow
methods, such as interval bisection, and fast but risky methods,
such as Newton or secant

I Hybrid methods combine best features of both types of methods to
achieve rapid but still guaranteed convergence

I Safe methods do not generalize readily to n dimensions, but Newton
and secant do, and they maintain their rapid asymptotic
convergence

I Secant updating methods (Broyden) significantly reduce overhead of
Newton’s method while still converging superlinearly

I Line search or trust region strategy can improve robustness of
Newton-like methods
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