CS 450 – Numerical Analysis

Chapter 3: Linear Least Squares [†]

Prof. Michael T. Heath

Department of Computer Science University of Illinois at Urbana-Champaign heath@illinois.edu

January 28, 2019

[†]Lecture slides based on the textbook *Scientific Computing: An Introductory Survey* by Michael T. Heath, copyright © 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/c180

Linear Least Squares

Method of Least Squares

- Measurement errors and other sources of random variation are inevitable in observational and experimental sciences
- Such variability can be smoothed out by averaging over many cases, e.g., taking more measurements than are strictly necessary to determine parameters of system
- Resulting system is *overdetermined*, so usually there is no exact solution
- In effect, higher dimensional data are projected onto lower dimensional space to suppress noise or irrelevant detail
- Such projection is most conveniently accomplished by method of least squares

Linear Least Squares

- For linear problems, we obtain *overdetermined* linear system Ax = b, with $m \times n$ matrix A, m > n
- System is better written Ax ≃ b, since equality is usually not exactly satisfiable when m > n
- Least squares solution x minimizes squared Euclidean norm of residual vector r = b - Ax,

$$\min_{x} \|\boldsymbol{r}\|_{2}^{2} = \min_{x} \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2}$$

Data Fitting

Given m data points (t_i, y_i), find n-vector x of parameters that gives "best fit" to model function f(t, x),

$$\min_{\boldsymbol{x}} \sum_{i=1}^{m} (y_i - f(t_i, \boldsymbol{x}))^2$$

Problem is *linear* if function f is linear in components of x,

$$f(t, \mathbf{x}) = x_1\phi_1(t) + x_2\phi_2(t) + \cdots + x_n\phi_n(t)$$

where functions ϕ_i depend only on t

• Linear problem can be written in matrix form as $Ax \cong b$, with $a_{ij} = \phi_j(t_i)$ and $b_i = y_i$

Data Fitting

Polynomial fitting

$$f(t, \mathbf{x}) = x_1 + x_2 t + x_3 t^2 + \dots + x_n t^{n-1}$$

is linear, since polynomial is linear in its coefficients, though nonlinear in independent variable t

Fitting sum of exponentials

$$f(t, \mathbf{x}) = x_1 e^{x_2 t} + \cdots + x_{n-1} e^{x_n t}$$

is example of nonlinear problem

For now, we will consider only linear least squares problems

Example: Data Fitting

 Fitting quadratic polynomial to five data points gives linear least squares problem

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ 1 & t_3 & t_3^2 \\ 1 & t_4 & t_4^2 \\ 1 & t_5 & t_5^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cong \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \boldsymbol{b}$$

 Matrix whose columns (or rows) are successive powers of independent variable is called Vandermonde matrix

Example, continued

For data

t	-1.0	-0.5	0.0	0.5	1.0
у	1.0	0.5	0.0	0.5	2.0

overdetermined 5×3 linear system is

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cong \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix} = \boldsymbol{b}$$

Solution, which we will see later how to compute, is

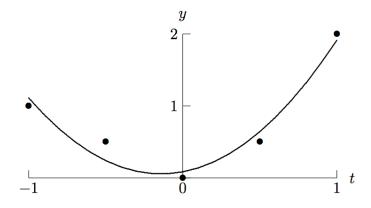
$$\boldsymbol{x} = \begin{bmatrix} 0.086 & 0.40 & 1.4 \end{bmatrix}^T$$

so approximating polynomial is

$$p(t) = 0.086 + 0.4t + 1.4t^2$$

Example, continued

Resulting curve and original data points are shown in graph



 \langle interactive example \rangle

Existence, Uniqueness, and Conditioning

Existence and Uniqueness

- Linear least squares problem $Ax \cong b$ always has solution
- Solution is unique if, and only if, columns of A are linearly independent, i.e., rank(A) = n, where A is m × n
- If rank(A) < n, then A is rank-deficient, and solution of linear least squares problem is not unique
- For now, we assume A has full column rank n

Normal Equations

> To minimize squared Euclidean norm of residual vector

$$\|\boldsymbol{r}\|_{2}^{2} = \boldsymbol{r}^{T}\boldsymbol{r} = (\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x})^{T}(\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x})$$
$$= \boldsymbol{b}^{T}\boldsymbol{b} - 2\boldsymbol{x}^{T}\boldsymbol{A}^{T}\boldsymbol{b} + \boldsymbol{x}^{T}\boldsymbol{A}^{T}\boldsymbol{A}\boldsymbol{x}$$

take derivative with respect to \boldsymbol{x} and set it to $\boldsymbol{0}$,

$$2\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{x} - 2\boldsymbol{A}^{\mathsf{T}}\boldsymbol{b} = \boldsymbol{0}$$

which reduces to $n \times n$ linear system of *normal equations*

$$\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{A}^{\mathsf{T}}\boldsymbol{b}$$

Orthogonality

- ▶ Vectors \mathbf{v}_1 and \mathbf{v}_2 are *orthogonal* if their inner product is zero, $\mathbf{v}_1^T \mathbf{v}_2 = 0$
- Space spanned by columns of m × n matrix A, span(A) = {Ax : x ∈ ℝⁿ}, is of dimension at most n
- If m > n, b generally does not lie in span(A), so there is no exact solution to Ax = b
- Vector y = Ax in span(A) closest to b in 2-norm occurs when residual r = b - Ax is orthogonal to span(A),

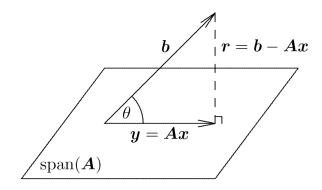
$$\mathbf{0} = \mathbf{A}^{\mathsf{T}}\mathbf{r} = \mathbf{A}^{\mathsf{T}}(\mathbf{b} - \mathbf{A}\mathbf{x})$$

again giving system of normal equations

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \mathbf{A}^{\mathsf{T}}\mathbf{b}$$

Orthogonality, continued

▶ Geometric relationships among b, r, and span(A) are shown in diagram



Orthogonal Projectors

- Matrix **P** is orthogonal projector if it is idempotent (**P**² = **P**) and symmetric (**P**^T = **P**)
- Orthogonal projector onto orthogonal complement span(P)[⊥] is given by P_⊥ = I − P
- ► For any vector **v**,

$$oldsymbol{v} = (oldsymbol{P} + (oldsymbol{I} - oldsymbol{P})) oldsymbol{v} = oldsymbol{P}oldsymbol{v} + oldsymbol{P}_{ot}oldsymbol{v}$$

For least squares problem $Ax \cong b$, if rank(A) = n, then

$$\mathbf{P} = \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$$

is orthogonal projector onto span(A), and

$$\boldsymbol{b} = \boldsymbol{P}\boldsymbol{b} + \boldsymbol{P}_{\perp}\boldsymbol{b} = \boldsymbol{A}\boldsymbol{x} + (\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}) = \boldsymbol{y} + \boldsymbol{r}$$

Pseudoinverse and Condition Number

- Nonsquare $m \times n$ matrix **A** has no inverse in usual sense
- ▶ If rank(**A**) = n, *pseudoinverse* is defined by

$$\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$$

and condition number by

$$\mathsf{cond}(\boldsymbol{A}) = \|\boldsymbol{A}\|_2 \cdot \|\boldsymbol{A}^+\|_2$$

- By convention, $cond(\mathbf{A}) = \infty$ if $rank(\mathbf{A}) < n$
- Just as condition number of square matrix measures closeness to singularity, condition number of rectangular matrix measures closeness to rank deficiency

• Least squares solution of
$$Ax \cong b$$
 is given by $x = A^+ b$

Sensitivity and Conditioning

• Define angle θ between **b** and $\mathbf{y} = \mathbf{A}\mathbf{x}$ by

$$\cos(\theta) = \frac{\|\boldsymbol{y}\|_2}{\|\boldsymbol{b}\|_2} = \frac{\|\boldsymbol{A}\boldsymbol{x}\|_2}{\|\boldsymbol{b}\|_2}$$

Bound on perturbation Δx in solution x due to perturbation Δb in b is given by

$$\frac{\|\Delta \boldsymbol{x}\|_2}{\|\boldsymbol{x}\|_2} \leq \mathsf{cond}(\boldsymbol{A}) \, \frac{1}{\mathsf{cos}(\theta)} \, \frac{\|\Delta \boldsymbol{b}\|_2}{\|\boldsymbol{b}\|_2}$$

Sensitivity and Conditioning, contnued

Similarly, for perturbation *E* in matrix *A*,

$$\frac{\|\Delta \mathbf{x}\|_2}{\|\mathbf{x}\|_2} \lesssim \left([\operatorname{cond}(\mathbf{A})]^2 \tan(\theta) + \operatorname{cond}(\mathbf{A}) \right) \frac{\|\mathbf{E}\|_2}{\|\mathbf{A}\|_2}$$

 Condition number of least squares solution is about cond(A) if residual is small, but it can be squared or arbitrarily worse for large residual

Solving Linear Least Squares Problems

Normal Equations Method

If m × n matrix A has rank n, then symmetric n × n matrix A^TA is positive definite, so its Cholesky factorization

$$A^T A = L L^T$$

can be used to obtain solution \boldsymbol{x} to system of normal equations

$$\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{x}=\boldsymbol{A}^{\mathsf{T}}\boldsymbol{b}$$

which has same solution as linear least squares problem $Ax \cong b$

Normal equations method involves transformations

rectangular \longrightarrow square \longrightarrow triangular

that preserve least squares solution in principle, but may not be satisfactory in finite-precision arithmetic

Example: Normal Equations Method

 For polynomial data-fitting example given previously, normal equations method gives

$$\boldsymbol{A}^{T}\boldsymbol{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\ 1.0 & 0.25 & 0.0 & 0.25 & 1.0 \end{bmatrix} \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix}$$
$$= \begin{bmatrix} 5.0 & 0.0 & 2.5 \\ 0.0 & 2.5 & 0.0 \\ 2.5 & 0.0 & 2.125 \end{bmatrix},$$
$$\boldsymbol{A}^{T}\boldsymbol{b} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\ 1.0 & 0.25 & 0.0 & 0.25 & 1.0 \end{bmatrix} \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix} = \begin{bmatrix} 4.0 \\ 1.0 \\ 3.25 \end{bmatrix}$$

Example, continued

 Cholesky factorization of symmetric positive definite matrix A^TA gives

$$\boldsymbol{A}^{T}\boldsymbol{A} = \begin{bmatrix} 5.0 & 0.0 & 2.5 \\ 0.0 & 2.5 & 0.0 \\ 2.5 & 0.0 & 2.125 \end{bmatrix}$$
$$= \begin{bmatrix} 2.236 & 0 & 0 \\ 0 & 1.581 & 0 \\ 1.118 & 0 & 0.935 \end{bmatrix} \begin{bmatrix} 2.236 & 0 & 1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & 0.935 \end{bmatrix} = \boldsymbol{L}\boldsymbol{L}^{T}$$

- Solving lower triangular system $Lz = A^T b$ by forward-substitution gives $z = \begin{bmatrix} 1.789 & 0.632 & 1.336 \end{bmatrix}^T$
- Solving upper triangular system $\boldsymbol{L}^T \boldsymbol{x} = \boldsymbol{z}$ by back-substitution gives $\boldsymbol{x} = \begin{bmatrix} 0.086 & 0.400 & 1.429 \end{bmatrix}^T$

Shortcomings of Normal Equations

- ▶ Information can be lost in forming $A^T A$ and $A^T b$
- ► For example, take

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$$

where ϵ is positive number smaller than $\sqrt{\epsilon_{\rm mach}}$

Then in floating-point arithmetic

$$\boldsymbol{A}^{T}\boldsymbol{A} = \begin{bmatrix} 1+\epsilon^{2} & 1\\ 1 & 1+\epsilon^{2} \end{bmatrix} = \begin{bmatrix} 1 & 1\\ 1 & 1 \end{bmatrix}$$

which is singular

Sensitivity of solution is also worsened, since

$$\operatorname{cond}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}) = [\operatorname{cond}(\boldsymbol{A})]^2$$

Augmented System Method

• Definition of residual together with orthogonality requirement give $(m + n) \times (m + n)$ augmented system

$$\begin{bmatrix} I & A \\ A^T & O \end{bmatrix} \begin{bmatrix} r \\ x \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

- ► Augmented system is not positive definite, is larger than original system, and requires storing two copies of **A**
- But it allows greater freedom in choosing pivots in computing *LDL^T* or *LU* factorization

Augmented System Method, continued

 \blacktriangleright Introducing scaling parameter α gives system

$$\begin{bmatrix} \alpha \mathbf{I} & \mathbf{A} \\ \mathbf{A}^{\mathsf{T}} & \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{r} / \alpha \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix}$$

which allows control over relative weights of two subsystems in choosing pivots

Reasonable rule of thumb is to take

$$\alpha = \max_{i,j} |a_{ij}| / 1000$$

 Augmented system is sometimes useful, but is far from ideal in work and storage required Orthogonalization Methods

Orthogonal Transformations

- We seek alternative method that avoids numerical difficulties of normal equations
- We need numerically robust transformation that produces easier problem without changing solution
- What kind of transformation leaves least squares solution unchanged?
- Square matrix Q is orthogonal if $Q^T Q = I$
- Multiplication of vector by orthogonal matrix preserves Euclidean norm

$$\|\boldsymbol{Q}\boldsymbol{v}\|_2^2 = (\boldsymbol{Q}\boldsymbol{v})^T \boldsymbol{Q}\boldsymbol{v} = \boldsymbol{v}^T \boldsymbol{Q}^T \boldsymbol{Q}\boldsymbol{v} = \boldsymbol{v}^T \boldsymbol{v} = \|\boldsymbol{v}\|_2^2$$

 Thus, multiplying both sides of least squares problem by orthogonal matrix does not change its solution

Triangular Least Squares Problems

- As with square linear systems, suitable target in simplifying least squares problems is triangular form
- Upper triangular overdetermined (m > n) least squares problem has form

$$\begin{bmatrix} \boldsymbol{R} \\ \boldsymbol{O} \end{bmatrix} \boldsymbol{x} \cong \begin{bmatrix} \boldsymbol{b}_1 \\ \boldsymbol{b}_2 \end{bmatrix}$$

where **R** is $n \times n$ upper triangular and **b** is partitioned similarly

Residual is

$$\|\boldsymbol{r}\|_{2}^{2} = \|\boldsymbol{b}_{1} - \boldsymbol{R}\boldsymbol{x}\|_{2}^{2} + \|\boldsymbol{b}_{2}\|_{2}^{2}$$

Triangular Least Squares Problems, continued

▶ We have no control over second term, $\|\boldsymbol{b}_2\|_2^2$, but first term becomes zero if \boldsymbol{x} satisfies $n \times n$ triangular system

$$Rx = b_1$$

which can be solved by back-substitution

Resulting x is least squares solution, and minimum sum of squares is

$$\|\boldsymbol{r}\|_2^2 = \|\boldsymbol{b}_2\|_2^2$$

 So our strategy is to transform general least squares problem to triangular form using orthogonal transformation so that least squares solution is preserved

QR Factorization

Given m × n matrix A, with m > n, we seek m × m orthogonal matrix Q such that

$$A = Q \begin{bmatrix} R \\ O \end{bmatrix}$$

where \boldsymbol{R} is $n \times n$ and upper triangular

► Linear least squares problem Ax ≅ b is then transformed into triangular least squares problem

$$\boldsymbol{Q}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} \boldsymbol{R} \\ \boldsymbol{O} \end{bmatrix} \boldsymbol{x} \cong \begin{bmatrix} \boldsymbol{C}_1 \\ \boldsymbol{C}_2 \end{bmatrix} = \boldsymbol{Q}^{\mathsf{T}}\boldsymbol{b}$$

which has same solution, since

$$\|\boldsymbol{r}\|_{2}^{2} = \|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} = \|\boldsymbol{b} - \boldsymbol{Q}\begin{bmatrix}\boldsymbol{R}\\\boldsymbol{O}\end{bmatrix}\boldsymbol{x}\|_{2}^{2} = \|\boldsymbol{Q}^{\mathsf{T}}\boldsymbol{b} - \begin{bmatrix}\boldsymbol{R}\\\boldsymbol{O}\end{bmatrix}\boldsymbol{x}\|_{2}^{2}$$

Orthogonal Bases

If we partition m × m orthogonal matrix Q = [Q₁ Q₂], where Q₁ is m × n, then

$$\boldsymbol{A} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{R} \\ \boldsymbol{O} \end{bmatrix} = [\boldsymbol{Q}_1 \ \boldsymbol{Q}_2] \begin{bmatrix} \boldsymbol{R} \\ \boldsymbol{O} \end{bmatrix} = \begin{bmatrix} \boldsymbol{Q}_1 \boldsymbol{R} \end{bmatrix}$$

is called *reduced* QR factorization of *A*

- Columns of Q₁ are orthonormal basis for span(A), and columns of Q₂ are orthonormal basis for span(A)[⊥]
- $\boldsymbol{Q}_1 \boldsymbol{Q}_1^T$ is orthogonal projector onto span(\boldsymbol{A})
- Solution to least squares problem Ax ≅ b is given by solution to square system

$$\boldsymbol{Q}_1^T \boldsymbol{A} \boldsymbol{x} = \frac{\boldsymbol{R} \boldsymbol{x} = \boldsymbol{c}_1}{\boldsymbol{R} \boldsymbol{x} = \boldsymbol{c}_1} = \boldsymbol{Q}_1^T \boldsymbol{b}$$

Computing QR Factorization

- ► To compute QR factorization of m × n matrix A, with m > n, we annihilate subdiagonal entries of successive columns of A, eventually reaching upper triangular form
- Similar to LU factorization by Gaussian elimination, but use orthogonal transformations instead of elementary elimination matrices
- Available methods include
 - Householder transformations
 - Givens rotations
 - Gram-Schmidt orthogonalization

Householder QR Factorization

Householder Transformations

Householder transformation has form

$$\boldsymbol{H} = \boldsymbol{I} - 2\frac{\boldsymbol{v}\boldsymbol{v}^{T}}{\boldsymbol{v}^{T}\boldsymbol{v}}$$

for nonzero vector ${m v}$

- **H** is orthogonal and symmetric: $\mathbf{H} = \mathbf{H}^T = \mathbf{H}^{-1}$
- Given vector a, we want to choose v so that

$$\boldsymbol{H}\boldsymbol{a} = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \alpha \boldsymbol{e}_1$$

Substituting into formula for *H*, we can take

$$\mathbf{v} = \mathbf{a} - \alpha \mathbf{e}_1$$

and $\alpha = \pm \| \boldsymbol{a} \|_2$, with sign chosen to avoid cancellation

Example: Householder Transformation • If $\mathbf{a} = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^T$, then we take

$$\mathbf{v} = \mathbf{a} - \alpha \mathbf{e}_1 = \begin{bmatrix} 2\\1\\2 \end{bmatrix} - \alpha \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 2\\1\\2 \end{bmatrix} - \begin{bmatrix} \alpha\\0\\0 \end{bmatrix}$$

where $\alpha = \pm \|\boldsymbol{a}\|_2 = \pm 3$

Since a_1 is positive, we choose negative sign for α to avoid cancellation, so $\mathbf{v} = \begin{bmatrix} 2\\1\\2 \end{bmatrix} - \begin{bmatrix} -3\\0\\0 \end{bmatrix} = \begin{bmatrix} 5\\1\\2 \end{bmatrix}$

To confirm that transformation works,

$$\boldsymbol{H}\boldsymbol{a} = \boldsymbol{a} - 2\frac{\boldsymbol{v}^{T}\boldsymbol{a}}{\boldsymbol{v}^{T}\boldsymbol{v}}\boldsymbol{v} = \begin{bmatrix} 2\\1\\2 \end{bmatrix} - 2\frac{15}{30}\begin{bmatrix} 5\\1\\2 \end{bmatrix} = \begin{bmatrix} -3\\0\\0 \end{bmatrix}$$

 \langle interactive example \rangle

Householder QR Factorization

- To compute QR factorization of A, use Householder transformations to annihilate subdiagonal entries of each successive column
- Each Householder transformation is applied to entire matrix, but does not affect prior columns, so zeros are preserved
- In applying Householder transformation H to arbitrary vector u,

$$\boldsymbol{H}\boldsymbol{u} = \left(\boldsymbol{I} - 2\frac{\boldsymbol{v}\boldsymbol{v}^{T}}{\boldsymbol{v}^{T}\boldsymbol{v}}\right)\boldsymbol{u} = \boldsymbol{u} - \left(2\frac{\boldsymbol{v}^{T}\boldsymbol{u}}{\boldsymbol{v}^{T}\boldsymbol{v}}\right)\boldsymbol{v}$$

which is much cheaper than general matrix-vector multiplication and requires only vector \boldsymbol{v} , not full matrix \boldsymbol{H}

Householder QR Factorization, continued

Process just described produces factorization

$$oldsymbol{H}_n\cdotsoldsymbol{H}_1oldsymbol{A}=egin{bmatrix}oldsymbol{R}\\oldsymbol{O}\end{bmatrix}$$

where \boldsymbol{R} is $n \times n$ and upper triangular

▶ If
$$\boldsymbol{Q} = \boldsymbol{H}_1 \cdots \boldsymbol{H}_n$$
, then $\boldsymbol{A} = \boldsymbol{Q} \begin{bmatrix} \boldsymbol{R} \\ \boldsymbol{O} \end{bmatrix}$

To preserve solution of linear least squares problem, right-hand side
 b is transformed by same sequence of Householder transformations

► Then solve triangular least squares problem
$$\begin{bmatrix} R \\ O \end{bmatrix} x \cong Q^T b$$

Householder QR Factorization, continued

- For solving linear least squares problem, product Q of Householder transformations need not be formed explicitly
- **R** can be stored in upper triangle of array initially containing **A**
- ► Householder vectors v can be stored in (now zero) lower triangular portion of A (almost)
- Householder transformations most easily applied in this form anyway

Example: Householder QR Factorization

For polynomial data-fitting example given previously, with

$$\boldsymbol{A} = \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix}$$

Householder vector v₁ for annihilating subdiagonal entries of first column of A is

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} -2.236\\0\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 3.236\\1\\1\\1\\1\\1 \end{bmatrix}$$

Example, continued

 Applying resulting Householder transformation *H*₁ yields transformed matrix and right-hand side

$$\boldsymbol{H}_{1}\boldsymbol{A} = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & -0.191 & -0.405 \\ 0 & 0.309 & -0.655 \\ 0 & 0.809 & -0.405 \\ 0 & 1.309 & 0.345 \end{bmatrix}, \quad \boldsymbol{H}_{1}\boldsymbol{b} = \begin{bmatrix} -1.789 \\ -0.362 \\ -0.862 \\ -0.362 \\ 1.138 \end{bmatrix}$$

Householder vector v₂ for annihilating subdiagonal entries of second column of H₁A is

$$\mathbf{v}_2 = \begin{bmatrix} 0\\ -0.191\\ 0.309\\ 0.809\\ 1.309 \end{bmatrix} - \begin{bmatrix} 0\\ 1.581\\ 0\\ 0\\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ -1.772\\ 0.309\\ 0.809\\ 1.309 \end{bmatrix}$$

Example, continued

> Applying resulting Householder transformation H_2 yields

$$\boldsymbol{H}_{2}\boldsymbol{H}_{1}\boldsymbol{A} = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & -0.725 \\ 0 & 0 & -0.589 \\ 0 & 0 & 0.047 \end{bmatrix}, \quad \boldsymbol{H}_{2}\boldsymbol{H}_{1}\boldsymbol{b} = \begin{bmatrix} -1.789 \\ 0.632 \\ -1.035 \\ -0.816 \\ 0.404 \end{bmatrix}$$

Householder vector v₃ for annihilating subdiagonal entries of third column of H₂H₁A is

$$\mathbf{v}_3 = \begin{bmatrix} 0\\0\\-0.725\\-0.589\\0.047 \end{bmatrix} - \begin{bmatrix} 0\\0\\0.935\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\-1.660\\-0.589\\0.047 \end{bmatrix}$$

Example, continued

► Applying resulting Householder transformation *H*₃ yields

$$\boldsymbol{H}_{3}\boldsymbol{H}_{2}\boldsymbol{H}_{1}\boldsymbol{A} = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & 0.935 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \boldsymbol{H}_{3}\boldsymbol{H}_{2}\boldsymbol{H}_{1}\boldsymbol{b} = \begin{bmatrix} -1.789 \\ 0.632 \\ 1.336 \\ 0.026 \\ 0.337 \end{bmatrix}$$

Now solve upper triangular system $\mathbf{R}\mathbf{x} = \mathbf{c}_1$ by back-substitution to obtain $\mathbf{x} = \begin{bmatrix} 0.086 & 0.400 & 1.429 \end{bmatrix}^T$

 \langle interactive example \rangle

Givens QR Factorization

Givens Rotations

- Givens rotations introduce zeros one at a time
- Given vector $\begin{bmatrix} a_1 & a_2 \end{bmatrix}^T$, choose scalars c and s so that

$$\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$$

with
$$c^2+s^2=1$$
, or equivalently, $lpha=\sqrt{a_1^2+a_2^2}$

Previous equation can be rewritten

$$\begin{bmatrix} a_1 & a_2 \\ a_2 & -a_1 \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} = \begin{bmatrix} \alpha \\ 0 \end{bmatrix}$$

Gaussian elimination yields triangular system

$$\begin{bmatrix} a_1 & a_2 \\ 0 & -a_1 - a_2^2 / a_1 \end{bmatrix} \begin{bmatrix} c \\ s \end{bmatrix} = \begin{bmatrix} \alpha \\ -\alpha a_2 / a_1 \end{bmatrix}$$

Givens Rotations, continued

Back-substitution then gives

$$s = rac{lpha a_2}{a_1^2 + a_2^2}$$
 and $c = rac{lpha a_1}{a_1^2 + a_2^2}$

Finally,
$$c^2 + s^2 = 1$$
, or $\alpha = \sqrt{a_1^2 + a_2^2}$, implies

$$c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}}$$
 and $s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}}$

Example: Givens Rotation

• Let
$$\boldsymbol{a} = \begin{bmatrix} 4 & 3 \end{bmatrix}^T$$

▶ To annihilate second entry we compute cosine and sine

$$c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}} = \frac{4}{5} = 0.8$$
 and $s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}} = \frac{3}{5} = 0.6$

Rotation is then given by

$$\boldsymbol{G} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix}$$

To confirm that rotation works,

$$\boldsymbol{Ga} = \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

Givens QR Factorization

More generally, to annihilate selected component of vector in n dimensions, rotate target component with another component

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & c & 0 & s & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -s & 0 & c & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \end{bmatrix} = \begin{bmatrix} a_1 \\ \alpha \\ a_3 \\ 0 \\ a_5 \end{bmatrix}$$

- By systematically annihilating successive entries, we can reduce matrix to upper triangular form using sequence of Givens rotations
- Each rotation is orthogonal, so their product is orthogonal, producing QR factorization

Givens QR Factorization

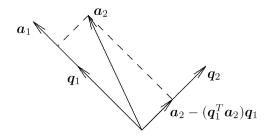
- Straightforward implementation of Givens method requires about 50% more work than Householder method, and also requires more storage, since each rotation requires two numbers, c and s, to specify it
- These disadvantages can be overcome, but more complicated implementation is required
- Givens can be advantageous for computing QR factorization when many entries of matrix are already zero, since those annihilations can then be skipped

 \langle interactive example \rangle

Gram-Schmidt QR Factorization

Gram-Schmidt Orthogonalization

- ▶ Given vectors a₁ and a₂, we seek orthonormal vectors q₁ and q₂ having same span
- This can be accomplished by subtracting from second vector its projection onto first vector and normalizing both resulting vectors, as shown in diagram



 \langle interactive example \rangle

Gram-Schmidt Orthogonalization

Process can be extended to any number of vectors a₁,..., a_k, orthogonalizing each successive vector against all preceding ones, giving *classical Gram-Schmidt* procedure

for
$$k = 1$$
 to n
 $q_k = a_k$
for $j = 1$ to $k - 1$
 $r_{jk} = q_j^T a_k$
 $q_k = q_k - r_{jk} q_j$
end
 $r_{kk} = ||q_k||_2$
 $q_k = q_k/r_{kk}$
end

▶ Resulting q_k and r_{jk} form reduced QR factorization of A

Modified Gram-Schmidt

- Classical Gram-Schmidt procedure often suffers loss of orthogonality in finite-precision arithmetic
- Also, separate storage is required for A, Q, and R, since original a_k are needed in inner loop, so q_k cannot overwrite columns of A
- Both deficiencies are improved by *modified Gram-Schmidt* procedure, with each vector orthogonalized in turn against all *subsequent* vectors, so *q_k* can overwrite *a_k*

Modified Gram-Schmidt QR Factorization

Modified Gram-Schmidt algorithm

for
$$k = 1$$
 to n
 $r_{kk} = ||\mathbf{a}_k||_2$
 $\mathbf{q}_k = \mathbf{a}_k / r_{kk}$
for $j = k + 1$ to n
 $r_{kj} = \mathbf{q}_k^T \mathbf{a}_j$
 $\mathbf{a}_j = \mathbf{a}_j - r_{kj} \mathbf{q}_k$
end
end

 \langle interactive example \rangle

Rank Deficiency

Rank Deficiency

- If rank(A) < n, then QR factorization still exists, but yields singular upper triangular factor R, and multiple vectors x give minimum residual norm
- Common practice selects minimum residual solution x having smallest norm
- Can be computed by QR factorization with column pivoting or by singular value decomposition (SVD)
- Rank of matrix is often not clear cut in practice, so relative tolerance is used to determine rank

Example: Near Rank Deficiency

• Consider 3×2 matrix

$$\boldsymbol{A} = \begin{bmatrix} 0.641 & 0.242 \\ 0.321 & 0.121 \\ 0.962 & 0.363 \end{bmatrix}$$

Computing QR factorization,

$$\boldsymbol{R} = \begin{bmatrix} 1.1997 & 0.4527 \\ 0 & 0.0002 \end{bmatrix}$$

- *R* is extremely close to singular (exactly singular to 3-digit accuracy of problem statement)
- ▶ If *R* is used to solve linear least squares problem, result is highly sensitive to perturbations in right-hand side
- For practical purposes, rank(A) = 1 rather than 2, because columns are nearly linearly dependent

QR with Column Pivoting

- Instead of processing columns in natural order, select for reduction at each stage column of remaining unreduced submatrix having maximum Euclidean norm
- If rank(A) = k < n, then after k steps, norms of remaining unreduced columns will be zero (or "negligible" in finite-precision arithmetic) below row k
- Yields orthogonal factorization of form

$$oldsymbol{Q}^{T}oldsymbol{A}oldsymbol{P} = egin{bmatrix} oldsymbol{R} & oldsymbol{S} \ oldsymbol{O} & oldsymbol{O} \end{bmatrix}$$

where \boldsymbol{R} is $k \times k$, upper triangular, and nonsingular, and permutation matrix \boldsymbol{P} performs column interchanges

QR with Column Pivoting, continued

Basic solution to least squares problem Ax ≃ b can now be computed by solving triangular system Rz = c₁, where c₁ contains first k components of Q^Tb, and then taking

$$x = P \begin{bmatrix} z \\ 0 \end{bmatrix}$$

- Minimum-norm solution can be computed, if desired, at expense of additional processing to annihilate S
- rank(A) is usually unknown, so rank is determined by monitoring norms of remaining unreduced columns and terminating factorization when maximum value falls below chosen tolerance

Singular Value Decomposition

Singular Value Decomposition

Singular value decomposition (SVD) of $m \times n$ matrix **A** has form

$$A = U \Sigma V^T$$

where **U** is $m \times m$ orthogonal matrix, **V** is $n \times n$ orthogonal matrix, and Σ is $m \times n$ diagonal matrix, with

$$\sigma_{ij} = \begin{cases} 0 & \text{for } i \neq j \\ \sigma_i \ge 0 & \text{for } i = j \end{cases}$$

- Diagonal entries σ_i, called singular values of A, are usually ordered so that σ₁ ≥ σ₂ ≥ ··· ≥ σ_n
- Columns u_i of U and v_i of V are called left and right singular vectors

Example: SVD

► SVD of
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$
 is given by $\mathbf{U} \Sigma \mathbf{V}^T = \begin{bmatrix} .141 & .825 & -.420 & -.351 \\ .344 & .426 & .298 & .782 \\ .344 & .426 & .298 & .782 \end{bmatrix} \begin{bmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} .504 & .574 & .644 \\ -.761 & -.057 & .646 \end{bmatrix}$

$$\begin{bmatrix} .547 & .0278 & .664 & -.509 \\ .750 & -.371 & -.542 & .0790 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} .701 & .037 & .040 \\ .408 & -.816 & .408 \end{bmatrix}$$

 \langle interactive example \rangle

Applications of SVD

• Minimum norm solution to $Ax \cong b$ is given by

$$\mathbf{x} = \sum_{\sigma_i
eq 0} rac{oldsymbol{u}_i^T oldsymbol{b}}{\sigma_i} oldsymbol{v}_i$$

For ill-conditioned or rank deficient problems, "small" singular values can be omitted from summation to stabilize solution

- Euclidean matrix norm: $\|\mathbf{A}\|_2 = \sigma_{\max}$
- Euclidean condition number of matrix: $cond_2(\mathbf{A}) = \frac{\sigma_{max}}{\sigma_{min}}$
- Rank of matrix: rank(A) = number of nonzero singular values

Pseudoinverse

- ▶ Define pseudoinverse of scalar σ to be $1/\sigma$ if $\sigma \neq 0$, zero otherwise
- Define pseudoinverse of (possibly rectangular) diagonal matrix by transposing and taking scalar pseudoinverse of each entry
- Then *pseudoinverse* of general real $m \times n$ matrix **A** is given by

 $\pmb{A}^+ = \pmb{V} \pmb{\Sigma}^+ \pmb{U}^T$

- Pseudoinverse always exists whether or not matrix is square or has full rank
- If **A** is square and nonsingular, then $\mathbf{A}^+ = \mathbf{A}^{-1}$
- ▶ In all cases, minimum-norm solution to $Ax \cong b$ is given by $x = A^+ b$

Orthogonal Bases

- SVD of matrix, A = UΣV^T, provides orthogonal bases for subspaces relevant to A
- Columns of U corresponding to nonzero singular values form orthonormal basis for span(A)
- Remaining columns of *U* form orthonormal basis for orthogonal complement span(*A*)[⊥]
- Columns of V corresponding to zero singular values form orthonormal basis for null space of A
- ▶ Remaining columns of *V* form orthonormal basis for orthogonal complement of null space of *A*

Lower-Rank Matrix Approximation

Another way to write SVD is

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{T} = \sigma_{1}\boldsymbol{E}_{1} + \sigma_{2}\boldsymbol{E}_{2} + \cdots + \sigma_{n}\boldsymbol{E}_{n}$$

with $\boldsymbol{E}_i = \boldsymbol{u}_i \boldsymbol{v}_i^T$

- E_i has rank 1 and can be stored using only m + n storage locations
- Product $E_i x$ can be computed using only m + n multiplications
- Condensed approximation to A is obtained by omitting from summation terms corresponding to small singular values
- Approximation using k largest singular values is closest matrix of rank k to A
- Approximation is useful in image processing, data compression, information retrieval, cryptography, etc.

 \langle interactive example \rangle

Total Least Squares

- Ordinary least squares is applicable when right-hand side b is subject to random error but matrix A is known accurately
- When all data, including A, are subject to error, then total least squares is more appropriate
- Total least squares minimizes orthogonal distances, rather than vertical distances, between model and data
- ► Total least squares solution can be computed from SVD of [A, b]

Comparison of Methods for Least Squares

Comparison of Methods

- ▶ Forming normal equations matrix A^TA requires about n²m/2 multiplications, and solving resulting symmetric linear system requires about n³/6 multiplications
- ► Solving least squares problem using Householder QR factorization requires about $mn^2 n^3/3$ multiplications
- If $m \approx n$, both methods require about same amount of work
- If m ≫ n, Householder QR requires about twice as much work as normal equations
- ► Cost of SVD is proportional to mn² + n³, with proportionality constant ranging from 4 to 10, depending on algorithm used

Comparison of Methods, continued

- Normal equations method produces solution whose relative error is proportional to [cond(A)]²
- ▶ Required Cholesky factorization can be expected to break down if cond(A) $\approx 1/\sqrt{\epsilon_{\rm mach}}$ or worse
- Householder method produces solution whose relative error is proportional to

 $\operatorname{cond}(\boldsymbol{A}) + \|\boldsymbol{r}\|_2 \left[\operatorname{cond}(\boldsymbol{A})\right]^2$

which is best possible, since this is inherent sensitivity of solution to least squares problem

► Householder method can be expected to break down (in back-substitution phase) only if $cond(A) \approx 1/\epsilon_{mach}$ or worse

Comparison of Methods, continued

- Householder is more accurate and more broadly applicable than normal equations
- These advantages may not be worth additional cost, however, when problem is sufficiently well-conditioned that normal equations provide sufficient accuracy
- For rank-deficient or nearly rank-deficient problems, Householder with column pivoting can produce useful solution when normal equations method fails outright
- SVD is even more robust and reliable than Householder, but substantially more expensive