CS 450 – Numerical Analysis

Chapter 3: Linear Least Squares †

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign
heath@illinois.edu

January 28, 2019

Linear Least Squares
Method of Least Squares

- Measurement errors and other sources of random variation are inevitable in observational and experimental sciences.

- Such variability can be smoothed out by averaging over many cases, e.g., taking more measurements than are strictly necessary to determine parameters of system.

- Resulting system is *overdetermined*, so usually there is no exact solution.

- In effect, higher dimensional data are projected onto lower dimensional space to suppress noise or irrelevant detail.

- Such projection is most conveniently accomplished by method of *least squares*.
Linear Least Squares

- For linear problems, we obtain *overdetermined* linear system \(Ax = b \), with \(m \times n \) matrix \(A \), \(m > n \)

- System is better written \(Ax \approx b \), since equality is usually not exactly satisfiable when \(m > n \)

- *Least squares* solution \(x \) minimizes squared Euclidean norm of residual vector \(r = b - Ax \),

\[
\min_x \| r \|^2 = \min_x \| b - Ax \|^2
\]
Data Fitting

- Given \(m \) data points \((t_i, y_i)\), find \(n \)-vector \(x \) of parameters that gives “best fit” to model function \(f(t, x) \),

\[
\min_x \sum_{i=1}^{m} (y_i - f(t_i, x))^2
\]

- Problem is \textit{linear} if function \(f \) is linear in components of \(x \),

\[
f(t, x) = x_1 \phi_1(t) + x_2 \phi_2(t) + \cdots + x_n \phi_n(t)
\]

where functions \(\phi_j \) depend only on \(t \)

- Linear problem can be written in matrix form as \(Ax \approx b \), with \(a_{ij} = \phi_j(t_i) \) and \(b_i = y_i \)
Data Fitting

- Polynomial fitting

\[f(t, x) = x_1 + x_2 t + x_3 t^2 + \cdots + x_n t^{n-1} \]

is linear, since polynomial is linear in its coefficients, though nonlinear in independent variable \(t \)

- Fitting sum of exponentials

\[f(t, x) = x_1 e^{x_2 t} + \cdots + x_{n-1} e^{x_n t} \]

is example of nonlinear problem

- For now, we will consider only linear least squares problems
Example: Data Fitting

- Fitting quadratic polynomial to five data points gives linear least squares problem
 \[
 A x = \begin{bmatrix}
 1 & t_1 & t_1^2 \\
 1 & t_2 & t_2^2 \\
 1 & t_3 & t_3^2 \\
 1 & t_4 & t_4^2 \\
 1 & t_5 & t_5^2 \\
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \end{bmatrix} \cong \begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4 \\
 y_5 \\
 \end{bmatrix} = b
 \]

- Matrix whose columns (or rows) are successive powers of independent variable is called Vandermonde matrix
Example, continued

- For data

<table>
<thead>
<tr>
<th>t</th>
<th>-1.0</th>
<th>-0.5</th>
<th>0.0</th>
<th>0.5</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>

overdetermined 5×3 linear system is

$$Ax = \begin{bmatrix} 1 & -1.0 & 1.0 \\ 1 & -0.5 & 0.25 \\ 1 & 0.0 & 0.0 \\ 1 & 0.5 & 0.25 \\ 1 & 1.0 & 1.0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \approx \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 2.0 \end{bmatrix} = b$$

- Solution, which we will see later how to compute, is

$$x = \begin{bmatrix} 0.086 \\ 0.40 \\ 1.4 \end{bmatrix}^T$$

so approximating polynomial is

$$p(t) = 0.086 + 0.4t + 1.4t^2$$
Example, continued

- Resulting curve and original data points are shown in graph

〈interactive example〉
Existence, Uniqueness, and Conditioning
Existence and Uniqueness

- Linear least squares problem $Ax \approx b$ always has solution.

- Solution is *unique* if, and only if, columns of A are *linearly independent*, i.e., $\text{rank}(A) = n$, where A is $m \times n$.

- If $\text{rank}(A) < n$, then A is *rank-deficient*, and solution of linear least squares problem is not unique.

- For now, we assume A has full column rank n.
Normal Equations

- To minimize squared Euclidean norm of residual vector

\[\|r\|_2^2 = r^T r = (b - Ax)^T (b - Ax) \]
\[= b^T b - 2x^T A^T b + x^T A^T A x \]

take derivative with respect to \(x \) and set it to 0,

\[2A^T Ax - 2A^T b = 0 \]

which reduces to \(n \times n \) linear system of normal equations

\[A^T A x = A^T b \]
Orthogonality

- Vectors \mathbf{v}_1 and \mathbf{v}_2 are *orthogonal* if their inner product is zero, $\mathbf{v}_1^T \mathbf{v}_2 = 0$

- Space spanned by columns of $m \times n$ matrix \mathbf{A}, $\text{span}(\mathbf{A}) = \{\mathbf{Ax} : \mathbf{x} \in \mathbb{R}^n\}$, is of dimension at most n

- If $m > n$, \mathbf{b} generally does not lie in $\text{span}(\mathbf{A})$, so there is no exact solution to $\mathbf{Ax} = \mathbf{b}$

- Vector $\mathbf{y} = \mathbf{Ax}$ in $\text{span}(\mathbf{A})$ closest to \mathbf{b} in 2-norm occurs when residual $\mathbf{r} = \mathbf{b} - \mathbf{Ax}$ is *orthogonal* to $\text{span}(\mathbf{A})$, $0 = \mathbf{A}^T \mathbf{r} = \mathbf{A}^T (\mathbf{b} - \mathbf{Ax})$

again giving system of *normal equations*

$$\mathbf{A}^T \mathbf{Ax} = \mathbf{A}^T \mathbf{b}$$
Orthogonality, continued

- Geometric relationships among b, r, and $\text{span}(A)$ are shown in diagram

\[r = b - Ax \]

\[\theta \]

\[y = Ax \]

\[\text{span}(A) \]
Orthogonal Projectors

- Matrix P is **orthogonal projector** if it is **idempotent** ($P^2 = P$) and **symmetric** ($P^T = P$)

- Orthogonal projector onto orthogonal complement span(P)$^\perp$ is given by $P_\perp = I - P$

- For any vector v,

 $$v = (P + (I - P))v = Pv + P_\perp v$$

- For least squares problem $Ax \cong b$, if $\text{rank}(A) = n$, then

 $$P = A(A^T A)^{-1} A^T$$

 is orthogonal projector onto span(A), and

 $$b = Pb + P_\perp b = Ax + (b - Ax) = y + r$$
Pseudoinverse and Condition Number

- Nonsquare $m \times n$ matrix A has no inverse in usual sense

- If $\text{rank}(A) = n$, \textit{pseudoinverse} is defined by
 \[
 A^+ = (A^T A)^{-1} A^T
 \]
 and condition number by
 \[
 \text{cond}(A) = \|A\|_2 \cdot \|A^+\|_2
 \]

- By convention, $\text{cond}(A) = \infty$ if $\text{rank}(A) < n$

- Just as condition number of square matrix measures closeness to singularity, condition number of rectangular matrix measures closeness to rank deficiency

- Least squares solution of $Ax \approx b$ is given by $x = A^+ b$
Sensitivity and Conditioning

- Sensitivity of least squares solution to $Ax \approx b$ depends on b as well as A

- Define angle θ between b and $y = Ax$ by

$$\cos(\theta) = \frac{\|y\|_2}{\|b\|_2} = \frac{\|Ax\|_2}{\|b\|_2}$$

- Bound on perturbation Δx in solution x due to perturbation Δb in b is given by

$$\frac{\|\Delta x\|_2}{\|x\|_2} \leq \text{cond}(A) \frac{1}{\cos(\theta)} \frac{\|\Delta b\|_2}{\|b\|_2}$$
Sensitivity and Conditioning, continued

- Similarly, for perturbation E in matrix A,

$$\frac{\| \Delta x \|_2}{\| x \|_2} \lesssim ([\text{cond}(A)]^2 \tan(\theta) + \text{cond}(A)) \frac{\| E \|_2}{\| A \|_2}$$

- Condition number of least squares solution is about $\text{cond}(A)$ if residual is small, but it can be squared or arbitrarily worse for large residual
Solving Linear Least Squares Problems
Normal Equations Method

- If $m \times n$ matrix A has rank n, then symmetric $n \times n$ matrix $A^T A$ is positive definite, so its Cholesky factorization

$$A^T A = LL^T$$

can be used to obtain solution x to system of normal equations

$$A^T Ax = A^T b$$

which has same solution as linear least squares problem $Ax \approx b$

- Normal equations method involves transformations

 rectangular \rightarrow square \rightarrow triangular

 that preserve least squares solution in principle, but may not be satisfactory in finite-precision arithmetic
Example: Normal Equations Method

- For polynomial data-fitting example given previously, normal equations method gives

\[
A^T A = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
-1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\
1.0 & 0.25 & 0.0 & 0.25 & 1.0 \\
\end{bmatrix}
\begin{bmatrix}
1 & -1.0 & 1.0 \\
1 & -0.5 & 0.25 \\
1 & 0.0 & 0.0 \\
1 & 0.5 & 0.25 \\
1 & 1.0 & 1.0 \\
\end{bmatrix}
\]

\[
= \begin{bmatrix}
5.0 & 0.0 & 2.5 \\
0.0 & 2.5 & 0.0 \\
2.5 & 0.0 & 2.125 \\
\end{bmatrix}
\]

\[
A^T b = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
-1.0 & -0.5 & 0.0 & 0.5 & 1.0 \\
1.0 & 0.25 & 0.0 & 0.25 & 1.0 \\
\end{bmatrix}
\begin{bmatrix}
1.0 \\
0.5 \\
0.0 \\
0.5 \\
2.0 \\
\end{bmatrix}
= \begin{bmatrix}
4.0 \\
1.0 \\
3.25 \\
\end{bmatrix}
\]
Example, continued

- Cholesky factorization of symmetric positive definite matrix $A^T A$
gives

$$A^T A = \begin{bmatrix} 5.0 & 0.0 & 2.5 \\ 0.0 & 2.5 & 0.0 \\ 2.5 & 0.0 & 2.125 \end{bmatrix} = \begin{bmatrix} 2.236 & 0 & 0 \\ 0 & 1.581 & 0 \\ 1.118 & 0 & 0.935 \end{bmatrix} \begin{bmatrix} 2.236 & 0 & 1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & 0.935 \end{bmatrix} = LL^T$$

- Solving lower triangular system $Lz = A^T b$ by forward-substitution
gives $z = \begin{bmatrix} 1.789 & 0.632 & 1.336 \end{bmatrix}^T$

- Solving upper triangular system $L^T x = z$ by back-substitution gives
 $x = \begin{bmatrix} 0.086 & 0.400 & 1.429 \end{bmatrix}^T$
Shortcomings of Normal Equations

- Information can be lost in forming $A^T A$ and $A^T b$

- For example, take

$$A = \begin{bmatrix} 1 & 1 \\ \epsilon & 0 \\ 0 & \epsilon \end{bmatrix}$$

where ϵ is positive number smaller than $\sqrt{\epsilon_{\text{mach}}}$

- Then in floating-point arithmetic

$$A^T A = \begin{bmatrix} 1 + \epsilon^2 & 1 \\ 1 & 1 + \epsilon^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

which is singular

- Sensitivity of solution is also worsened, since

$$\text{cond}(A^T A) = [\text{cond}(A)]^2$$
Augmented System Method

- Definition of residual together with orthogonality requirement give \((m + n) \times (m + n)\) augmented system

\[
\begin{bmatrix}
I & A \\
A^T & O
\end{bmatrix}
\begin{bmatrix}
r \\
x
\end{bmatrix}
=
\begin{bmatrix}
b \\
0
\end{bmatrix}
\]

- Augmented system is not positive definite, is larger than original system, and requires storing two copies of \(A\)

- But it allows greater freedom in choosing pivots in computing \(LDL^T\) or \(LU\) factorization
Augmented System Method, continued

- Introducing scaling parameter α gives system

$$
\begin{bmatrix}
\alpha I & A \\
A^T & O
\end{bmatrix}
\begin{bmatrix}
\frac{r}{\alpha} \\
x
\end{bmatrix}
=
\begin{bmatrix}
b \\
0
\end{bmatrix}
$$

which allows control over relative weights of two subsystems in choosing pivots.

- Reasonable rule of thumb is to take

$$
\alpha = \max_{i,j} \frac{|a_{ij}|}{1000}
$$

- Augmented system is sometimes useful, but is far from ideal in work and storage required.
Orthogonalization Methods
Orthogonal Transformations

- We seek alternative method that avoids numerical difficulties of normal equations
- We need numerically robust transformation that produces easier problem without changing solution
- What kind of transformation leaves least squares solution unchanged?
- Square matrix \(Q \) is orthogonal if \(Q^T Q = I \)
- Multiplication of vector by orthogonal matrix preserves Euclidean norm
 \[
 \| Qv \|_2^2 = (Qv)^T Qv = v^T Q^T Qv = v^T v = \| v \|_2^2
 \]
- Thus, multiplying both sides of least squares problem by orthogonal matrix does not change its solution
Triangular Least Squares Problems

- As with square linear systems, suitable target in simplifying least squares problems is triangular form

- Upper triangular overdetermined \((m > n)\) least squares problem has form

\[
\begin{bmatrix}
R \\ O
\end{bmatrix}
\begin{bmatrix}
x \\
0
\end{bmatrix} \approx
\begin{bmatrix}
b_1 \\
b_2
\end{bmatrix}
\]

where \(R\) is \(n \times n\) upper triangular and \(b\) is partitioned similarly

- Residual is

\[
\|r\|^2 = \|b_1 - Rx\|^2 + \|b_2\|^2
\]
Triangular Least Squares Problems, continued

- We have no control over second term, \(\| b_2 \|^2 \), but first term becomes zero if \(x \) satisfies \(n \times n \) triangular system

\[
Rx = b_1
\]

which can be solved by back-substitution

- Resulting \(x \) is least squares solution, and minimum sum of squares is

\[
\| r \|^2 = \| b_2 \|^2
\]

- So our strategy is to transform general least squares problem to triangular form using orthogonal transformation so that least squares solution is preserved
QR Factorization

▶ Given $m \times n$ matrix A, with $m > n$, we seek $m \times m$ orthogonal matrix Q such that

$$A = Q \begin{bmatrix} R \\ O \end{bmatrix}$$

where R is $n \times n$ and upper triangular

▶ Linear least squares problem $Ax \approx b$ is then transformed into triangular least squares problem

$$Q^T Ax = \begin{bmatrix} R \\ O \end{bmatrix} x \approx \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = Q^T b$$

which has same solution, since

$$\|r\|_2^2 = \|b - Ax\|_2^2 = \|b - Q \begin{bmatrix} R \\ O \end{bmatrix} x\|_2^2 = \|Q^T b - \begin{bmatrix} R \\ O \end{bmatrix} x\|_2^2$$
Orthogonal Bases

- If we partition $m \times m$ orthogonal matrix $Q = [Q_1 \ Q_2]$, where Q_1 is $m \times n$, then

$$A = Q \begin{bmatrix} R \\ O \end{bmatrix} = [Q_1 \ Q_2] \begin{bmatrix} R \\ O \end{bmatrix} = Q_1 R$$

is called reduced QR factorization of A

- Columns of Q_1 are orthonormal basis for span(A), and columns of Q_2 are orthonormal basis for span$(A)^\perp$

- $Q_1 Q_1^T$ is orthogonal projector onto span(A)

- Solution to least squares problem $Ax \approx b$ is given by solution to square system

$$Q_1^T Ax = Rx = c_1 = Q_1^T b$$
Computing QR Factorization

- To compute QR factorization of $m \times n$ matrix A, with $m > n$, we annihilate subdiagonal entries of successive columns of A, eventually reaching upper triangular form.

- Similar to LU factorization by Gaussian elimination, but use orthogonal transformations instead of elementary elimination matrices.

- Available methods include:
 - Householder transformations
 - Givens rotations
 - Gram-Schmidt orthogonalization
Householder QR Factorization
Householder Transformations

- *Householder transformation* has form

\[
H = I - 2\frac{vv^T}{v^Tv}
\]

for nonzero vector \(v\)

- \(H\) is orthogonal and symmetric: \(H = H^T = H^{-1}\)

- Given vector \(a\), we want to choose \(v\) so that

\[
Ha = \begin{bmatrix}
\alpha \\
0 \\
\vdots \\
0
\end{bmatrix} = \alpha \begin{bmatrix}
1 \\
0 \\
\vdots \\
0
\end{bmatrix} = \alpha e_1
\]

- Substituting into formula for \(H\), we can take

\[
v = a - \alpha e_1
\]

and \(\alpha = \pm \|a\|_2\), with sign chosen to avoid cancellation
Example: Householder Transformation

- If \(a = \begin{bmatrix} 2 & 1 & 2 \end{bmatrix}^T \), then we take

\[
\begin{align*}
v &= a - \alpha e_1 \\
&= \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \\
&= \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix}
\end{align*}
\]

where \(\alpha = \pm \|a\|_2 = \pm 3 \)

- Since \(a_1 \) is positive, we choose negative sign for \(\alpha \) to avoid cancellation, so \(v = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix} \)

- To confirm that transformation works,

\[
Ha = a - 2 \frac{v^T a}{v^T v} v = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} - 2 \frac{15}{30} \begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}
\]

⟨ interactive example ⟩
Householder QR Factorization

- To compute QR factorization of A, use Householder transformations to annihilate subdiagonal entries of each successive column.

- Each Householder transformation is applied to entire matrix, but does not affect prior columns, so zeros are preserved.

- In applying Householder transformation H to arbitrary vector u,

$$H u = \left(I - 2 \frac{vv^T}{v^Tv} \right) u = u - \left(2 \frac{v^T u}{v^Tv} \right) v$$

which is much cheaper than general matrix-vector multiplication and requires only vector v, not full matrix H.
Process just described produces factorization

\[H_n \cdots H_1 A = \begin{bmatrix} R \\ O \end{bmatrix} \]

where \(R \) is \(n \times n \) and upper triangular

- If \(Q = H_1 \cdots H_n \), then \(A = Q \begin{bmatrix} R \\ O \end{bmatrix} \)

- To preserve solution of linear least squares problem, right-hand side \(b \) is transformed by same sequence of Householder transformations

- Then solve triangular least squares problem \(\begin{bmatrix} R \\ O \end{bmatrix} x \rightleftharpoons Q^T b \)
For solving linear least squares problem, product Q of Householder transformations need not be formed explicitly.

- R can be stored in upper triangle of array initially containing A.
- Householder vectors v can be stored in (now zero) lower triangular portion of A (almost).
- Householder transformations most easily applied in this form anyway.
Example: Householder QR Factorization

- For polynomial data-fitting example given previously, with

\[
A = \begin{bmatrix}
1 & -1.0 & 1.0 \\
1 & -0.5 & 0.25 \\
1 & 0.0 & 0.0 \\
1 & 0.5 & 0.25 \\
1 & 1.0 & 1.0 \\
\end{bmatrix}, \quad b = \begin{bmatrix}
1.0 \\
0.5 \\
0.0 \\
0.5 \\
2.0 \\
\end{bmatrix}
\]

- Householder vector \(v_1 \) for annihilating subdiagonal entries of first column of \(A \) is

\[
v_1 = \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1 \\
\end{bmatrix} - \begin{bmatrix}
-2.236 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix} = \begin{bmatrix}
3.236 \\
1 \\
1 \\
1 \\
1 \\
\end{bmatrix}
\]
Example, continued

► Applying resulting Householder transformation H_1 yields transformed matrix and right-hand side

$$H_1A = \begin{bmatrix}
-2.236 & 0 & -1.118 \\
0 & -0.191 & -0.405 \\
0 & 0.309 & -0.655 \\
0 & 0.809 & -0.405 \\
0 & 1.309 & 0.345
\end{bmatrix}, \quad H_1b = \begin{bmatrix}
-1.789 \\
-0.362 \\
-0.862 \\
-0.362 \\
1.138
\end{bmatrix}$$

► Householder vector v_2 for annihilating subdiagonal entries of second column of H_1A is

$$v_2 = \begin{bmatrix}
0 \\
-0.191 \\
0.309 \\
0.809 \\
1.309
\end{bmatrix} - \begin{bmatrix}
0 \\
1.581 \\
0 \\
0 \\
0
\end{bmatrix} = \begin{bmatrix}
0 \\
-1.772 \\
0.309 \\
0.809 \\
1.309
\end{bmatrix}$$
Example, continued

- Applying resulting Householder transformation H_2 yields

$$H_2 H_1 A = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & -0.725 \\ 0 & 0 & -0.589 \\ 0 & 0 & 0.047 \end{bmatrix}, \quad H_2 H_1 b = \begin{bmatrix} -1.789 \\ 0.632 \\ -1.035 \\ -0.816 \\ 0.404 \end{bmatrix}$$

- Householder vector v_3 for annihilating subdiagonal entries of third column of $H_2 H_1 A$ is

$$v_3 = \begin{bmatrix} 0 \\ 0 \\ -0.725 \\ -0.589 \\ 0.047 \end{bmatrix} - 0.935 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1.660 \\ -0.589 \\ 0.047 \end{bmatrix}$$
Example, continued

- Applying resulting Householder transformation H_3 yields

$$H_3 H_2 H_1 A = \begin{bmatrix} -2.236 & 0 & -1.118 \\ 0 & 1.581 & 0 \\ 0 & 0 & 0.935 \end{bmatrix}, \quad H_3 H_2 H_1 b = \begin{bmatrix} -1.789 \\ 0.632 \\ 1.336 \end{bmatrix}$$

- Now solve upper triangular system $Rx = c_1$ by back-substitution to obtain $x = \begin{bmatrix} 0.086 & 0.400 & 1.429 \end{bmatrix}^T$

⟨interactive example⟩
Givens QR Factorization
Givens Rotations

- *Givens rotations* introduce zeros one at a time
- Given vector \([a_1 \ a_2]^T \), choose scalars \(c \) and \(s \) so that

\[
\begin{bmatrix}
 c & s \\
 -s & c \\
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
\end{bmatrix}
= \begin{bmatrix}
 \alpha \\
 0 \\
\end{bmatrix}
\]

with \(c^2 + s^2 = 1 \), or equivalently, \(\alpha = \sqrt{a_1^2 + a_2^2} \)

- Previous equation can be rewritten

\[
\begin{bmatrix}
 a_1 & a_2 \\
 a_2 & -a_1 \\
\end{bmatrix}
\begin{bmatrix}
 c \\
 s \\
\end{bmatrix}
= \begin{bmatrix}
 \alpha \\
 0 \\
\end{bmatrix}
\]

- Gaussian elimination yields triangular system

\[
\begin{bmatrix}
 a_1 & a_2 \\
 0 & -a_1 - a_2^2/a_1 \\
\end{bmatrix}
\begin{bmatrix}
 c \\
 s \\
\end{bmatrix}
= \begin{bmatrix}
 \alpha \\
 -\alpha a_2/a_1 \\
\end{bmatrix}
\]
Givens Rotations, continued

- Back-substitution then gives

\[s = \frac{\alpha a_2}{a_1^2 + a_2^2} \quad \text{and} \quad c = \frac{\alpha a_1}{a_1^2 + a_2^2} \]

- Finally, \(c^2 + s^2 = 1 \), or \(\alpha = \sqrt{a_1^2 + a_2^2} \), implies

\[c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}} \quad \text{and} \quad s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}} \]
Example: Givens Rotation

- Let \(\mathbf{a} = \begin{bmatrix} 4 & 3 \end{bmatrix}^T \)

- To annihilate second entry we compute cosine and sine

\[
c = \frac{a_1}{\sqrt{a_1^2 + a_2^2}} = \frac{4}{5} = 0.8 \quad \text{and} \quad s = \frac{a_2}{\sqrt{a_1^2 + a_2^2}} = \frac{3}{5} = 0.6
\]

- Rotation is then given by

\[
\mathbf{G} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix}
\]

- To confirm that rotation works,

\[
\mathbf{G}\mathbf{a} = \begin{bmatrix} 0.8 & 0.6 \\ -0.6 & 0.8 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}
\]
Givens QR Factorization

- More generally, to annihilate selected component of vector in n dimensions, rotate target component with another component

$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & c & 0 & s & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & -s & 0 & c & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5
\end{bmatrix}
=
\begin{bmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5
\end{bmatrix}
$$

- By systematically annihilating successive entries, we can reduce matrix to upper triangular form using sequence of Givens rotations

- Each rotation is orthogonal, so their product is orthogonal, producing QR factorization
Givens QR Factorization

- Straightforward implementation of Givens method requires about 50% more work than Householder method, and also requires more storage, since each rotation requires two numbers, c and s, to specify it.

- These disadvantages can be overcome, but more complicated implementation is required.

- Givens can be advantageous for computing QR factorization when many entries of matrix are already zero, since those annihilations can then be skipped.

⟨ interactive example ⟩
Gram-Schmidt QR Factorization
Gram-Schmidt Orthogonalization

- Given vectors \(a_1 \) and \(a_2 \), we seek orthonormal vectors \(q_1 \) and \(q_2 \) having same span

- This can be accomplished by subtracting from second vector its projection onto first vector and normalizing both resulting vectors, as shown in diagram

\[
a_2 - (q_1^T a_2)q_1
\]
Gram-Schmidt Orthogonalization

- Process can be extended to any number of vectors a_1, \ldots, a_k, orthogonalizing each successive vector against all preceding ones, giving classical Gram-Schmidt procedure

```plaintext
for k = 1 to n
    $q_k = a_k$
    for j = 1 to k - 1
        $r_{jk} = q_j^T a_k$
        $q_k = q_k - r_{jk} q_j$
    end
    $r_{kk} = \|q_k\|_2$
    $q_k = q_k / r_{kk}$
end
```

- Resulting q_k and r_{jk} form reduced QR factorization of A
Modified Gram-Schmidt

- Classical Gram-Schmidt procedure often suffers loss of orthogonality in finite-precision arithmetic

- Also, separate storage is required for A, Q, and R, since original a_k are needed in inner loop, so q_k cannot overwrite columns of A

- Both deficiencies are improved by *modified Gram-Schmidt* procedure, with each vector orthogonalized in turn against all subsequent vectors, so q_k can overwrite a_k
Modified Gram-Schmidt QR Factorization

- Modified Gram-Schmidt algorithm

```plaintext
for k = 1 to n
    r_{kk} = \|a_k\|_2
    q_k = a_k / r_{kk}
    for j = k + 1 to n
        r_{kj} = q_k^T a_j
        a_j = a_j - r_{kj} q_k
    end
end
```

⟨ interactive example ⟩
Rank Deficiency
Rank Deficiency

- If \(\text{rank}(A) < n \), then QR factorization still exists, but yields singular upper triangular factor \(R \), and multiple vectors \(x \) give minimum residual norm.

- Common practice selects minimum residual solution \(x \) having smallest norm.

- Can be computed by QR factorization with column pivoting or by singular value decomposition (SVD).

- Rank of matrix is often not clear cut in practice, so relative tolerance is used to determine rank.
Example: Near Rank Deficiency

- Consider 3 × 2 matrix

\[
A = \begin{bmatrix}
0.641 & 0.242 \\
0.321 & 0.121 \\
0.962 & 0.363
\end{bmatrix}
\]

- Computing QR factorization,

\[
R = \begin{bmatrix}
1.1997 & 0.4527 \\
0 & 0.0002
\end{bmatrix}
\]

- \(R \) is extremely close to singular (exactly singular to 3-digit accuracy of problem statement)

- If \(R \) is used to solve linear least squares problem, result is highly sensitive to perturbations in right-hand side

- For practical purposes, \(\text{rank}(A) = 1 \) rather than 2, because columns are nearly linearly dependent
QR with Column Pivoting

- Instead of processing columns in natural order, select for reduction at each stage column of remaining unreduced submatrix having maximum Euclidean norm.

- If \(\text{rank}(A) = k < n \), then after \(k \) steps, norms of remaining unreduced columns will be zero (or “negligible” in finite-precision arithmetic) below row \(k \).

- Yields orthogonal factorization of form

\[
Q^T AP = \begin{bmatrix} R & S \\ O & O \end{bmatrix}
\]

where \(R \) is \(k \times k \), upper triangular, and nonsingular, and permutation matrix \(P \) performs column interchanges.
QR with Column Pivoting, continued

- **Basic solution** to least squares problem \(Ax \cong b \) can now be computed by solving triangular system \(Rz = c_1 \), where \(c_1 \) contains first \(k \) components of \(Q^T b \), and then taking

 \[
 x = P \begin{bmatrix} z \\ 0 \end{bmatrix}
 \]

- **Minimum-norm solution** can be computed, if desired, at expense of additional processing to annihilate \(S \)

- \(\text{rank}(A) \) is usually unknown, so rank is determined by monitoring norms of remaining unreduced columns and terminating factorization when maximum value falls below chosen tolerance

\(\langle \text{interactive example} \rangle \)
Singular Value Decomposition
Singular Value Decomposition

- Singular value decomposition (SVD) of $m \times n$ matrix A has form
 \[A = U \Sigma V^T \]
 where U is $m \times m$ orthogonal matrix, V is $n \times n$ orthogonal matrix, and Σ is $m \times n$ diagonal matrix, with
 \[
 \sigma_{ij} = \begin{cases}
 0 & \text{for } i \neq j \\
 \sigma_i \geq 0 & \text{for } i = j
 \end{cases}
 \]
- Diagonal entries σ_i, called singular values of A, are usually ordered so that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$
- Columns u_i of U and v_i of V are called left and right singular vectors
Example: SVD

▶ SVD of $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$ is given by $U\Sigma V^T =$

$\begin{bmatrix} .141 & .825 & -0.420 & -0.351 \\ .344 & .426 & .298 & .782 \\ .547 & .0278 & .664 & -0.509 \\ .750 & -0.371 & -0.542 & .0790 \end{bmatrix} \begin{bmatrix} 25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} .504 & .574 & .644 \\ -0.761 & -0.057 & .646 \\ .408 & -0.816 & .408 \end{bmatrix}$
Applications of SVD

- **Minimum norm solution** to $Ax \approx b$ is given by

$$x = \sum_{\sigma_i \neq 0} \frac{u_i^T b}{\sigma_i} v_i$$

For ill-conditioned or rank deficient problems, “small” singular values can be omitted from summation to stabilize solution.

- **Euclidean matrix norm**: $\|A\|_2 = \sigma_{\text{max}}$

- **Euclidean condition number of matrix**: $\text{cond}_2(A) = \frac{\sigma_{\text{max}}}{\sigma_{\text{min}}}$

- **Rank of matrix**: $\text{rank}(A) = \text{number of nonzero singular values}$
Pseudoinverse

- Define pseudoinverse of scalar σ to be $1/\sigma$ if $\sigma \neq 0$, zero otherwise.

- Define pseudoinverse of (possibly rectangular) diagonal matrix by transposing and taking scalar pseudoinverse of each entry.

- Then pseudoinverse of general real $m \times n$ matrix A is given by:

 $$A^+ = V \Sigma^+ U^T$$

- Pseudoinverse always exists whether or not matrix is square or has full rank.

- If A is square and nonsingular, then $A^+ = A^{-1}$.

- In all cases, minimum-norm solution to $Ax \approx b$ is given by $x = A^+ b$.
Orthogonal Bases

- SVD of matrix, $A = U\Sigma V^T$, provides orthogonal bases for subspaces relevant to A

- Columns of U corresponding to nonzero singular values form orthonormal basis for $\text{span}(A)$

- Remaining columns of U form orthonormal basis for orthogonal complement $\text{span}(A)^\perp$

- Columns of V corresponding to zero singular values form orthonormal basis for null space of A

- Remaining columns of V form orthonormal basis for orthogonal complement of null space of A
Lower-Rank Matrix Approximation

- Another way to write SVD is

\[A = U \Sigma V^T = \sigma_1 E_1 + \sigma_2 E_2 + \cdots + \sigma_n E_n \]

with \(E_i = u_i v_i^T \)

- \(E_i \) has rank 1 and can be stored using only \(m + n \) storage locations

- Product \(E_i x \) can be computed using only \(m + n \) multiplications

- Condensed approximation to \(A \) is obtained by omitting from summation terms corresponding to small singular values

- Approximation using \(k \) largest singular values is closest matrix of rank \(k \) to \(A \)

- Approximation is useful in image processing, data compression, information retrieval, cryptography, etc.

⟨ interactive example ⟩
Total Least Squares

- Ordinary least squares is applicable when right-hand side b is subject to random error but matrix A is known accurately.

- When all data, including A, are subject to error, then total least squares is more appropriate.

- Total least squares minimizes orthogonal distances, rather than vertical distances, between model and data.

- Total least squares solution can be computed from SVD of $[A, b]$.
Comparison of Methods for Least Squares
Comparison of Methods

- Forming normal equations matrix $A^T A$ requires about $n^2 m/2$ multiplications, and solving resulting symmetric linear system requires about $n^3/6$ multiplications.

- Solving least squares problem using Householder QR factorization requires about $mn^2 - n^3/3$ multiplications.

- If $m \approx n$, both methods require about same amount of work.

- If $m \gg n$, Householder QR requires about twice as much work as normal equations.

- Cost of SVD is proportional to $mn^2 + n^3$, with proportionality constant ranging from 4 to 10, depending on algorithm used.
Comparison of Methods, continued

- Normal equations method produces solution whose relative error is proportional to \([\text{cond}(A)]^2\)

- Required Cholesky factorization can be expected to break down if \(\text{cond}(A) \approx 1/\sqrt{\varepsilon_{\text{mach}}}\) or worse

- Householder method produces solution whose relative error is proportional to

\[
\text{cond}(A) + \|r\|_2 [\text{cond}(A)]^2
\]

which is best possible, since this is inherent sensitivity of solution to least squares problem

- Householder method can be expected to break down (in back-substitution phase) only if \(\text{cond}(A) \approx 1/\varepsilon_{\text{mach}}\) or worse
Comparison of Methods, continued

- Householder is more accurate and more broadly applicable than normal equations.

- These advantages may not be worth additional cost, however, when problem is sufficiently well-conditioned that normal equations provide sufficient accuracy.

- For rank-deficient or nearly rank-deficient problems, Householder with column pivoting can produce useful solution when normal equations method fails outright.

- SVD is even more robust and reliable than Householder, but substantially more expensive.