CS 450 – Numerical Analysis

Chapter 2: Systems of Linear Equations †

Prof. Michael T. Heath

Department of Computer Science University of Illinois at Urbana-Champaign heath@illinois.edu

January 28, 2019

[†]Lecture slides based on the textbook *Scientific Computing: An Introductory Survey* by Michael T. Heath, copyright © 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/c180

Systems of Linear Equations

Review: Matrix-Vector Product

$$\mathbf{Ax} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= \begin{bmatrix} a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n \\ \hline a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n \\ \hline \vdots \\ \hline a_{m,1}x_1 + a_{m,2}x_2 + \cdots + a_{m,n}x_n \end{bmatrix}$$

$$= x_1 \begin{bmatrix} a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{m,1} \end{bmatrix} + x_2 \begin{bmatrix} a_{1,2} \\ a_{2,2} \\ \vdots \\ a_{m,2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1,n} \\ a_{2,n} \\ \vdots \\ a_{m,n} \end{bmatrix}$$

Definition: For $\mathbf{A} \in \mathbb{R}^{m \times n}$, span $(\mathbf{A}) = {\mathbf{A}\mathbf{x} : \mathbf{x} \in \mathbb{R}^n}$

System of Linear Equations

 $\mathbf{A} \mathbf{x} = \mathbf{b}$

- ▶ Given $m \times n$ matrix \boldsymbol{A} and m-vector \boldsymbol{b} , find unknown n-vector \boldsymbol{x} satisfying $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$
- System of equations asks whether b can be expressed as linear combination of columns of A, or equivalently, is b ∈ span(A)?
- If so, coefficients of linear combination are components of solution vector x
- ▶ Solution may or may not *exist*, and may or may not be *unique*
- For now, we consider only square case, m = n

Singularity and Nonsingularity

 $n \times n$ matrix ${\bf A}$ is *nonsingular* if it has any of following equivalent properties

- 1. Inverse of \boldsymbol{A} , denoted by \boldsymbol{A}^{-1} , exists such that $\boldsymbol{A}\boldsymbol{A}^{-1}=\boldsymbol{A}^{-1}\boldsymbol{A}=\boldsymbol{I}$
- 2. $det(\mathbf{A}) \neq 0$
- 3. $\operatorname{rank}(\mathbf{A}) = n$
- 4. For any vector $z \neq 0$, $Az \neq 0$

Existence and Uniqueness

- Existence and uniqueness of solution to **A**x = **b** depend on whether **A** is singular or nonsingular
- ► Can also depend on **b**, but only in singular case
- ▶ If $b \in \text{span}(A)$, system is *consistent*

A	b	# solutions
nonsingular	arbitrary	1
singular	$m{b} \in span(m{A})$	∞
· ·	. ,	
singular	$m{b} otin span(m{A})$	0

Geometric Interpretation

- ▶ In two dimensions, each equation determines straight line in plane
- Solution is intersection point of two straight lines, if any
- ▶ If two straight lines are not parallel (nonsingular), then their intersection point is unique solution
- ▶ If two straight lines are parallel (singular), then they either do not intersect (no solution) or else they coincide (any point along line is solution)
- ► In higher dimensions, each equation determines hyperplane; if matrix is nonsingular, intersection of hyperplanes is unique solution

Example: Nonsingularity

 \triangleright 2 × 2 system

$$2x_1 + 3x_2 = b_1 5x_1 + 4x_2 = b_2$$

or in matrix-vector notation

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \mathbf{b}$$

is nonsingular and thus has unique solution regardless of value of ${m b}$

▶ For example, if $\mathbf{b} = \begin{bmatrix} 8 & 13 \end{bmatrix}^T$, then $\mathbf{x} = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ is unique solution

Example: Singularity

▶ 2 × 2 system

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \mathbf{b}$$

is singular regardless of value of \boldsymbol{b}

- With $\mathbf{b} = \begin{bmatrix} 4 & 7 \end{bmatrix}^T$, there is no solution
- ▶ With $\boldsymbol{b} = \begin{bmatrix} 4 & 8 \end{bmatrix}^T$, $\boldsymbol{x} = \begin{bmatrix} \gamma & (4-2\gamma)/3 \end{bmatrix}^T$ is solution for any real number γ , so there are infinitely many solutions

Norms and Condition Number

Vector Norms

- Magnitude (absolute value, modulus) for scalars generalizes to norm for vectors
- ▶ We will use only *p*-norms, defined by

$$\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}$$

for integer p > 0 and n-vector x

- Important special cases
 - ▶ 1-norm: $||x||_1 = \sum_{i=1}^n |x_i|$
 - 2-norm: $||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$
 - ightharpoonup ∞ -norm: $\|x\|_{\infty} = \max_i |x_i|$

Example: Vector Norms

Drawing shows unit "circle" in two dimensions for each norm

▶ Norms have following values for vector shown

$$\| {m x} \|_1 = 2.8, \quad \| {m x} \|_2 = 2.0, \quad \| {m x} \|_\infty = 1.6$$

 \langle interactive example \rangle

Equivalence of Norms

- ▶ In general, for any vector x in \mathbb{R}^n , $\|x\|_1 \ge \|x\|_2 \ge \|x\|_{\infty}$
- ► However, we also have
 - $\|x\|_1 \leq \sqrt{n} \cdot \|x\|_2$
 - $\|\mathbf{x}\|_2 \leq \sqrt{n} \cdot \|\mathbf{x}\|_{\infty}$
 - $||x||_1 \le n \cdot ||x||_{\infty}$
- ► For given *n*, norms differ by at most a constant, and hence are equivalent: if one is small, all must be proportionally small
- Consequently, we can use whichever norm is most convenient in given context

Properties of Vector Norms

- ► For any vector norm
 - ▶ ||x|| > 0 if $x \neq 0$
 - ▶ $\|\gamma x\| = |\gamma| \cdot \|x\|$ for any scalar γ
 - ▶ $||x + y|| \le ||x|| + ||y||$ (triangle inequality)
- In more general treatment, these properties taken as definition of vector norm
- Useful variation on triangle inequality
 - $| ||x|| ||y|| | \le ||x y||$

Matrix Norms

▶ *Matrix norm* induced by a given vector norm is defined by

$$\|\textbf{\textit{A}}\| = \mathsf{max}_{\textbf{\textit{x}} \neq \textbf{0}} \, \frac{\|\textbf{\textit{A}}\textbf{\textit{x}}\|}{\|\textbf{\textit{x}}\|}$$

► Norm of matrix measures maximum relative stretching matrix does to any vector in given vector norm

Example Matrix Norms

 Matrix norm induced by vector 1-norm is maximum absolute column sum

$$\|\boldsymbol{A}\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$$

Matrix norm induced by vector ∞-norm is maximum absolute row sum

$$\|oldsymbol{A}\|_{\infty}=\max_{i}\sum_{j=1}^{n}|a_{ij}|$$

- ▶ Handy way to remember these is that matrix norms agree with corresponding vector norms for $n \times 1$ matrix
- ▶ No simple formula for matrix 2-norm

Properties of Matrix Norms

- Any matrix norm satisfies
 - ▶ ||A|| > 0 if $A \neq 0$
 - $| | | | \gamma \mathbf{A} | | = | \gamma | \cdot | | \mathbf{A} | |$ for any scalar γ
 - ▶ $||A + B|| \le ||A|| + ||B||$
- ▶ Matrix norms we have defined also satisfy
 - ▶ $||AB|| \le ||A|| \cdot ||B||$
 - ▶ $||Ax|| \le ||A|| \cdot ||x||$ for any vector x

Condition Number

► Condition number of square nonsingular matrix **A** is defined by

$$\mathsf{cond}(\boldsymbol{A}) = \|\boldsymbol{A}\| \cdot \|\boldsymbol{A}^{-1}\|$$

- ▶ By convention, $cond(\mathbf{A}) = \infty$ if \mathbf{A} is singular
- Since

$$\|\mathbf{A}\| \cdot \|\mathbf{A}^{-1}\| = \left(\max_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}\right) \cdot \left(\min_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}\right)^{-1}$$

condition number measures ratio of maximum stretching to maximum shrinking matrix does to any nonzero vectors

► Large cond(**A**) means **A** is *nearly singular*

Properties of Condition Number

- ▶ For any matrix \boldsymbol{A} , cond(\boldsymbol{A}) ≥ 1
- ▶ For identity matrix I, cond(I) = 1
- ▶ For any matrix \boldsymbol{A} and scalar γ , cond $(\gamma \boldsymbol{A}) = \text{cond}(\boldsymbol{A})$
- For any diagonal matrix $m{D} = \mathrm{diag}(d_i)$, $\mathrm{cond}(m{D}) = \frac{\max |d_i|}{\min |d_i|}$

⟨ interactive example ⟩

Computing Condition Number

- Definition of condition number involves matrix inverse, so it is nontrivial to compute
- Computing condition number from definition would require much more work than computing solution whose accuracy is to be assessed
- In practice, condition number is estimated inexpensively as byproduct of solution process
- Matrix norm ||A|| is easily computed as maximum absolute column sum (or row sum, depending on norm used)
- ▶ Estimating $\|\mathbf{A}^{-1}\|$ at low cost is more challenging

Computing Condition Number, continued

From properties of norms, if Az = y, then

$$\frac{\|\boldsymbol{z}\|}{\|\boldsymbol{y}\|} \leq \|\boldsymbol{A}^{-1}\|$$

and this bound is achieved for optimally chosen y

- ▶ Efficient condition estimators heuristically pick y with large ratio $\|z\|/\|y\|$, yielding good estimate for $\|A^{-1}\|$
- Good software packages for linear systems provide efficient and reliable condition estimator
- Condition number useful in assessing accuracy of approximate solution

Assessing Accuracy

Error Bounds

- Condition number yields error bound for approximate solution to linear system
- Let x be solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$, and let $\hat{\mathbf{x}}$ be solution to $\mathbf{A}\hat{\mathbf{x}} = \mathbf{b} + \Delta \mathbf{b}$
- ▶ If $\Delta x = \hat{x} x$, then

$$b + \Delta b = A(\hat{x}) = A(x + \Delta x) = Ax + A\Delta x$$

which leads to bound

$$\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \operatorname{cond}(\mathbf{A}) \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}$$

for possible relative change in solution ${\pmb x}$ due to relative change in right-hand side ${\pmb b}$

⟨ interactive example ⟩

Error Bounds, continued

Similar result holds for relative change in matrix: if $(\mathbf{A} + \mathbf{E})\hat{\mathbf{x}} = \mathbf{b}$, then

$$\frac{\|\Delta \textbf{\textit{x}}\|}{\|\hat{\textbf{\textit{x}}}\|} \leq \mathsf{cond}(\textbf{\textit{A}}) \frac{\|\textbf{\textit{E}}\|}{\|\textbf{\textit{A}}\|}$$

If input data are accurate to machine precision, then bound for relative error in solution x becomes

$$\frac{\|\hat{\pmb{x}} - \pmb{x}\|}{\|\pmb{x}\|} \leq \mathsf{cond}(\pmb{A}) \, \epsilon_{\mathrm{mach}}$$

 Computed solution loses about log₁₀(cond(A)) decimal digits of accuracy relative to accuracy of input

Error Bounds – Illustration

► In two dimensions, uncertainty in intersection point of two lines depends on whether lines are nearly parallel

⟨ interactive example ⟩

Error Bounds - Caveats

- Normwise analysis bounds relative error in largest components of solution; relative error in smaller components can be much larger
 - Componentwise error bounds can be obtained, but are somewhat more complicated
- Conditioning of system is affected by relative scaling of rows or columns
 - Ill-conditioning can result from poor scaling as well as near singularity
 - Rescaling can help the former, but not the latter

Residual

Residual vector of approximate solution \hat{x} to linear system Ax = b is defined by

$$r = b - A\hat{x}$$

- In theory, if $\bf A$ is nonsingular, then $\|\hat{\bf x}-{\bf x}\|=0$ if, and only if, $\|{\bf r}\|=0$, but they are not necessarily *small* simultaneously
- Since

$$\frac{\|\Delta x\|}{\|\hat{x}\|} \leq \operatorname{cond}(A) \frac{\|r\|}{\|A\| \cdot \|\hat{x}\|}$$

small relative residual implies small relative error in approximate solution only if \boldsymbol{A} is well-conditioned

Residual, continued

▶ If computed solution \hat{x} exactly satisfies

$$(\mathbf{A} + \mathbf{E})\hat{\mathbf{x}} = \mathbf{b}$$

then

$$\frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\| \|\hat{\boldsymbol{x}}\|} \leq \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|}$$

so large *relative residual* implies large backward error in matrix, and algorithm used to compute solution is *unstable*

- Stable algorithm yields small relative residual regardless of conditioning of nonsingular system
- Small residual is easy to obtain, but does not necessarily imply computed solution is accurate

Example: Small Residual

For linear system

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 0.913 & 0.659 \\ 0.457 & 0.330 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.254 \\ 0.127 \end{bmatrix} = \mathbf{b}$$

consider two approximate solutions

$$\hat{\mathbf{x}}_1 = \begin{bmatrix} 0.6391 \\ -0.5 \end{bmatrix}, \qquad \hat{\mathbf{x}}_2 = \begin{bmatrix} 0.999 \\ -1.001 \end{bmatrix}$$

Norms of respective residuals are

$$\|\mathbf{r}_1\|_1 = 7.0 \times 10^{-5}, \qquad \|\mathbf{r}_2\|_1 = 2.4 \times 10^{-2}$$

- Exact solution is $\mathbf{x} = [1, -1]^T$, so $\hat{\mathbf{x}}_2$ is much more accurate than $\hat{\mathbf{x}}_1$, despite having much larger residual
- ▶ **A** is ill-conditioned (cond(**A**) > 10^4), so small residual does *not* imply small error

Solving Linear Systems

Solving Linear Systems

- ► General strategy: To solve linear system, transform it into one whose solution is same but easier to compute
- What type of transformation of linear system leaves solution unchanged?
- We can *premultiply* (from left) both sides of linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ by any *nonsingular* matrix \mathbf{M} without affecting solution
- ▶ Solution to MAx = Mb is given by

$$x = (MA)^{-1}Mb = A^{-1}M^{-1}Mb = A^{-1}b$$

Example: Permutations

- ▶ Permutation matrix **P** has one 1 in each row and column and zeros elsewhere, i.e., identity matrix with rows or columns permuted
- $ightharpoonup oldsymbol{P}^T$ reverses permutation, so $oldsymbol{P}^{-1} = oldsymbol{P}^T$
- Premultiplying both sides of system by permutation matrix,
 PAx = Pb, reorders rows, but solution x is unchanged
- Postmultiplying \boldsymbol{A} by permutation matrix, $\boldsymbol{APx} = \boldsymbol{b}$, reorders columns, which permutes components of original solution

$$x = (AP)^{-1}b = P^{-1}A^{-1}b = P^{T}(A^{-1}b)$$

Example: Diagonal Scaling

- Now scaling: premultiplying both sides of system by nonsingular diagonal matrix D, DAx = Db, multiplies each row of matrix and right-hand side by corresponding diagonal entry of D, but solution x is unchanged
- ▶ Column scaling: postmultiplying \boldsymbol{A} by \boldsymbol{D} , $\boldsymbol{A}\boldsymbol{D}\boldsymbol{x} = \boldsymbol{b}$, multiplies each column of matrix by corresponding diagonal entry of \boldsymbol{D} , which rescales original solution

$$x = (AD)^{-1}b = D^{-1}A^{-1}b$$

Triangular Linear Systems

- ▶ What type of linear system is easy to solve?
- ▶ If one equation in system involves only one component of solution (i.e., only one entry in that row of matrix is nonzero), then that component can be computed by division
- If another equation in system involves only one additional solution component, then by substituting one known component into it, we can solve for other component
- If this pattern continues, with only one new solution component per equation, then all components of solution can be computed in succession.
- System with this property is called triangular

Triangular Matrices

- ▶ Two specific triangular forms are of particular interest
 - lower triangular: all entries above main diagonal are zero, $a_{ij} = 0$ for i < j
 - upper triangular: all entries below main diagonal are zero, $a_{ij} = 0$ for i > j
- ► Successive substitution process described earlier is especially easy to formulate for lower or upper triangular systems
- Any triangular matrix can be permuted into upper or lower triangular form by suitable row permutation

Forward-Substitution

Forward-substitution for lower triangular system Lx = b

$$x_1 = b_1/\ell_{11}, \quad x_i = \left(b_i - \sum_{j=1}^{i-1} \ell_{ij} x_j\right) / \ell_{ii}, \quad i = 2, \dots, n$$

```
\begin{array}{ll} \textbf{for } j=1 \textbf{ to } n & \{ \text{ loop over columns } \} \\ \textbf{if } \ell_{jj}=0 \textbf{ then stop} & \{ \text{ stop if matrix is singular } \} \\ x_j=b_j/\ell_{jj} & \{ \text{ compute solution component } \} \\ \textbf{for } i=j+1 \textbf{ to } n \\ b_i=b_i-\ell_{ij}x_j & \{ \text{ update right-hand side } \} \\ \textbf{end} \\ \textbf{end} \end{array}
```

Back-Substitution

Back-substitution for upper triangular system Ux = b

$$x_n = b_n/u_{nn}, \quad x_i = \left(b_i - \sum_{j=i+1}^n u_{ij}x_j\right)/u_{ii}, \quad i = n-1,\ldots,1$$

Example: Triangular Linear System

$$\begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$$

- ▶ Using back-substitution for this upper triangular system, last equation, $4x_3 = 8$, is solved directly to obtain $x_3 = 2$
- ▶ Next, x_3 is substituted into second equation to obtain $x_2 = 2$
- ▶ Finally, both x_3 and x_2 are substituted into first equation to obtain $x_1 = -1$

Elementary Elimination Matrices

Elimination

- ► To transform general linear system into triangular form, need to replace selected nonzero entries of matrix by zeros
- ▶ This can be accomplished by taking linear combinations of rows
- ► Consider 2-vector $\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$
- ▶ If $a_1 \neq 0$, then

$$\begin{bmatrix} 1 & 0 \\ -a_2/a_1 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ 0 \end{bmatrix}$$

Elementary Elimination Matrices

► More generally, we can annihilate *all* entries below *k*th position in *n*-vector *a* by transformation

$$\mathbf{M}_{k}\mathbf{a} = \begin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -m_{n} & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ a_{k+1} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where
$$m_i = a_i/a_k$$
, $i = k+1, \ldots, n$

- \triangleright Divisor a_k , called *pivot*, must be nonzero
- Matrix M_k, called elementary elimination matrix, adds multiple of row k to each subsequent row, with multipliers m_i chosen so that result is zero

Elementary Elimination Matrices, continued

- $ightharpoonup M_k$ is unit lower triangular and nonsingular
- ▶ $\mathbf{M}_k = \mathbf{I} \mathbf{m}_k \mathbf{e}_k^T$, where $\mathbf{m}_k = [0, \dots, 0, m_{k+1}, \dots, m_n]^T$ and \mathbf{e}_k is kth column of identity matrix
- ▶ $M_k^{-1} = I + m_k e_k^T$, which means $M_k^{-1} = L_k$ is same as M_k except signs of multipliers are reversed
- ▶ If M_j , j > k, is another elementary elimination matrix, with vector of multipliers m_j , then

$$\mathbf{M}_{k}\mathbf{M}_{j} = \mathbf{I} - \mathbf{m}_{k}\mathbf{e}_{k}^{T} - \mathbf{m}_{j}\mathbf{e}_{j}^{T} + \mathbf{m}_{k}\mathbf{e}_{k}^{T}\mathbf{m}_{j}\mathbf{e}_{j}^{T}$$
$$= \mathbf{I} - \mathbf{m}_{k}\mathbf{e}_{k}^{T} - \mathbf{m}_{j}\mathbf{e}_{j}^{T}$$

which means their product is essentially their "union" and similarly for product of inverses, $\mathbf{L}_k \mathbf{L}_i$

Example: Elementary Elimination Matrices

For
$$\mathbf{a} = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix}$$
,

$$\mathbf{M}_1 \mathbf{a} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

and

$$\mathbf{M}_2 \mathbf{a} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}$$

Example, continued

Note that

$$m{L}_1 = m{M}_1^{-1} = egin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad m{L}_2 = m{M}_2^{-1} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1/2 & 1 \end{bmatrix}$$

and

$$\mathbf{M}_1 \mathbf{M}_2 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 1/2 & 1 \end{bmatrix}, \quad \mathbf{L}_1 \mathbf{L}_2 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & -1/2 & 1 \end{bmatrix}$$

LU Factorization by Gaussian Elimination

Gaussian Elimination

- ▶ To reduce general linear system Ax = b to upper triangular form, first choose M_1 , with a_{11} as pivot, to annihilate first column of A below first row
 - ▶ System becomes $M_1Ax = M_1b$, but solution is unchanged
- Next choose M_2 , using a_{22} as pivot, to annihilate second column of M_1A below second row
 - ▶ System becomes $M_2M_1Ax = M_2M_1b$, but solution is still unchanged
- Process continues for each successive column until all subdiagonal entries have been zeroed
- Resulting upper triangular linear system

$$M_{n-1}\cdots M_1Ax = M_{n-1}\cdots M_1b$$

 $MAx = Mb$

can be solved by back-substitution to obtain solution to original linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$

▶ Process just described is called Gaussian elimination

LU Factorization

▶ Product $\mathbf{L}_k \mathbf{L}_j$ is unit lower triangular if k < j, so

$$L = M^{-1} = M_1^{-1} \cdots M_{n-1}^{-1} = L_1 \cdots L_{n-1}$$

is unit lower triangular

- **b** By design, MA = U is upper triangular
- ► So we have

$$A = LU$$

with \boldsymbol{L} unit lower triangular and \boldsymbol{U} upper triangular

► Thus, Gaussian elimination produces *LU factorization* of matrix into triangular factors

LU Factorization, continued

▶ Having obtained LU factorization $\mathbf{A} = \mathbf{L}\mathbf{U}$, equation $\mathbf{A}\mathbf{x} = \mathbf{b}$ becomes

$$LUx = b$$

which can be solved by

- ightharpoonup solving lower triangular system Ly = b for y by forward-substitution
- then solving upper triangular system Ux = y for x by back-substitution
- Note that y = Mb is same as transformed right-hand side in Gaussian elimination
- Gaussian elimination and LU factorization are two ways of expressing same solution process

LU Factorization by Gaussian Elimination

```
for k = 1 to n - 1
                                        { loop over columns }
                                        { stop if pivot is zero }
    if a_{kk} = 0 then stop
    for i = k + 1 to n
                                        { compute multipliers
        m_{ik} = a_{ik}/a_{kk}
                                            for current column }
    end
    for j = k + 1 to n
        for i = k + 1 to n
                                        { apply transformation to
                                            remaining submatrix }
            a_{ii} = a_{ii} - m_{ik}a_{ki}
        end
    end
end
```

Example: Gaussian Elimination

▶ Use Gaussian elimination to solve linear system

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \mathbf{b}$$

▶ To annihilate subdiagonal entries of first column of A,

$$\mathbf{M}_{1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix},$$

$$\mathbf{M}_1 \mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 12 \end{bmatrix}$$

Example, continued

▶ To annihilate subdiagonal entry of second column of M_1A ,

$$\mathbf{M}_{2}\mathbf{M}_{1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = \mathbf{U},$$

$$\mathbf{M}_2 \mathbf{M}_1 \mathbf{b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 12 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} = \mathbf{M} \mathbf{b}$$

► We have reduced original system to equivalent upper triangular system

$$Ux = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} = Mb$$

which can now be solved by back-substitution to obtain $\mathbf{x} = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$

Example, continued

► To write out LU factorization explicitly,

$$\mathbf{\textit{L}}_{1}\mathbf{\textit{L}}_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} = \mathbf{\textit{L}}$$

so that

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = \mathbf{LU}$$

Pivoting

Row Interchanges

- Gaussian elimination breaks down if leading diagonal entry of remaining unreduced matrix is zero at any stage
- ▶ Easy fix: if diagonal entry in column *k* is zero, then interchange row *k* with some subsequent row having nonzero entry in column *k* and then proceed as usual
- ▶ If there is no nonzero on or below diagonal in column *k*, then there is nothing to do at this stage, so skip to next column
- Zero on diagonal causes resulting upper triangular matrix U to be singular, but LU factorization can still be completed
- Subsequent back-substitution will fail, however, as it should for singular matrix

Partial Pivoting

- In principle, any nonzero value will do as pivot, but in practice pivot should be chosen to minimize error propagation
- ▶ To avoid amplifying previous rounding errors when multiplying remaining portion of matrix by elementary elimination matrix, multipliers should not exceed 1 in magnitude
- This can be accomplished by choosing entry of largest magnitude on or below diagonal as pivot at each stage
- Such partial pivoting is essential in practice for numerically stable implementation of Gaussian elimination for general linear systems

⟨ interactive example ⟩

LU Factorization with Partial Pivoting

- ▶ With partial pivoting, each M_k is preceded by permutation P_k to interchange rows to bring entry of largest magnitude into diagonal pivot position
- ▶ Still obtain MA = U, with U upper triangular, but now

$$\mathbf{M} = \mathbf{M}_{n-1} \mathbf{P}_{n-1} \cdots \mathbf{M}_1 \mathbf{P}_1$$

- ho $L=M^{-1}$ is still triangular in general sense, but not necessarily *lower* triangular
- Alternatively, we can write

$$PA = LU$$

where $P = P_{n-1} \cdots P_1$ permutes rows of **A** into order determined by partial pivoting, and now **L** is lower triangular

Complete Pivoting

- Complete pivoting is more exhaustive strategy in which largest entry in entire remaining unreduced submatrix is permuted into diagonal pivot position
- Requires interchanging columns as well as rows, leading to factorization

$$PAQ = LU$$

with $m{L}$ unit lower triangular, $m{U}$ upper triangular, and $m{P}$ and $m{Q}$ permutations

- Numerical stability of complete pivoting is theoretically superior, but pivot search is more expensive than for partial pivoting
- Numerical stability of partial pivoting is more than adequate in practice, so it is almost always used in solving linear systems by Gaussian elimination

Example: Pivoting

- Need for pivoting has nothing to do with whether matrix is singular or nearly singular
- For example,

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

is nonsingular yet has no LU factorization unless rows are interchanged, whereas

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

is singular yet has LU factorization

Example: Small Pivots

▶ To illustrate effect of small pivots, consider

$$\mathbf{A} = \begin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix}$$

where ϵ is positive number smaller than ϵ_{mach}

▶ If rows are not interchanged, then pivot is ϵ and multiplier is $-1/\epsilon$, so $\begin{bmatrix} 1 & 0 \end{bmatrix}$

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ -1/\epsilon & 1 \end{bmatrix}, \quad \mathbf{L} = \begin{bmatrix} 1 & 0 \\ 1/\epsilon & 1 \end{bmatrix},$$

$$\boldsymbol{U} = egin{bmatrix} \epsilon & 1 \\ 0 & 1 - 1/\epsilon \end{bmatrix} = egin{bmatrix} \epsilon & 1 \\ 0 & -1/\epsilon \end{bmatrix}$$

in floating-point arithmetic, but then

$$m{L} \, m{U} = egin{bmatrix} 1 & 0 \ 1/\epsilon & 1 \end{bmatrix} egin{bmatrix} \epsilon & 1 \ 0 & -1/\epsilon \end{bmatrix} = egin{bmatrix} \epsilon & 1 \ 1 & 0 \end{bmatrix}
eq m{A}$$

Example, continued

- Using small pivot, and correspondingly large multiplier, has caused loss of information in transformed matrix
- ▶ If rows interchanged, then pivot is 1 and multiplier is $-\epsilon$, so

$$\mathbf{M} = \begin{bmatrix} 1 & 0 \\ -\epsilon & 1 \end{bmatrix}, \quad \mathbf{L} = \begin{bmatrix} 1 & 0 \\ \epsilon & 1 \end{bmatrix},$$

$$oldsymbol{U} = egin{bmatrix} 1 & 1 \ 0 & 1 - \epsilon \end{bmatrix} = egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}$$

in floating-point arithmetic

► Thus,

$$\boldsymbol{L}\boldsymbol{U} = \begin{bmatrix} 1 & 0 \\ \epsilon & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \epsilon & 1 \end{bmatrix}$$

which is correct after permutation

Pivoting, continued

- Although pivoting is generally required for stability of Gaussian elimination, pivoting is not required for some important classes of matrices
- ► Diagonally dominant

$$\sum_{i=1,\,i
eq j}^n |a_{ij}| < |a_{jj}|,\quad j=1,\ldots,n$$

Symmetric positive definite

$$\mathbf{A} = \mathbf{A}^T$$
 and $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$

Residual

Residual

▶ Residual $\mathbf{r} = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}}$ for solution $\hat{\mathbf{x}}$ computed using Gaussian elimination satisfies

$$\frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\| \|\hat{\boldsymbol{x}}\|} \leq \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|} \leq \rho \ n^2 \ \epsilon_{\text{mach}}$$

where ${\pmb E}$ is backward error in matrix ${\pmb A}$ and growth factor ρ is ratio of largest entry of ${\pmb U}$ to largest entry of ${\pmb A}$

- \blacktriangleright Without pivoting, ρ can be arbitrarily large, so Gaussian elimination without pivoting is *unstable*
- ▶ With partial pivoting, ρ can still be as large as 2^{n-1} , but such behavior is extremely rare

Residual, continued

▶ There is little or no growth in practice, so

$$\frac{\|m{r}\|}{\|m{A}\| \|\hat{m{x}}\|} \leq \frac{\|m{E}\|}{\|m{A}\|} \lessapprox n \ \epsilon_{\mathrm{mach}}$$

which means Gaussian elimination with partial pivoting yields small relative residual regardless of conditioning of system

- ► Thus, small relative residual does *not* necessarily imply computed solution is close to "true" solution unless system is well-conditioned
- Complete pivoting yields even smaller growth factor, but additional margin of stability is not usually worth extra cost

Example: Small Residual

▶ Use 4-digit decimal arithmetic to solve

$$\begin{bmatrix} 0.913 & 0.659 \\ 0.457 & 0.330 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.254 \\ 0.127 \end{bmatrix}$$

Gaussian elimination with partial pivoting yields triangular system

$$\begin{bmatrix} 0.9130 & 0.6590 \\ 0 & 0.0002 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.2540 \\ -0.0001 \end{bmatrix}$$

Back-substitution then gives solution

$$\hat{\mathbf{x}} = \begin{bmatrix} 0.6391 & -0.5 \end{bmatrix}^T$$

▶ Exact residual norm for this solution is 7.04×10^{-5} , as small as we can expect using 4-digit arithmetic

Example, continued

But exact solution is

$$\mathbf{x} = \begin{bmatrix} 1.00 & 1.00 \end{bmatrix}^T$$

so error is almost as large as solution

- Cause of this phenomenon is that matrix is nearly singular $(\text{cond}(\textbf{A}) > 10^4)$
- \triangleright Division that determines x_2 is between two quantities that are both on order of rounding error, and hence result is essentially arbitrary
- ▶ When arbitrary value for x_2 is substituted into first equation, value for x_1 is computed so that first equation is satisfied, yielding small residual, but poor solution

Implementing Gaussian Elimination

Implementing Gaussian Elimination

Gaussian elimination has general form of triple-nested loop

```
for ______

for _____

for _____

a_{ij}=a_{ij}-(a_{ik}/a_{kk})a_{kj}

end

end

end
```

- ▶ Indices i, j, and k of for loops can be taken in any order, for total of 3! = 6 different arrangements
- ► These variations have different memory access patterns, which may cause their performance to vary widely on different computers

Uniqueness of LU Factorization

- Despite variations in computing it, LU factorization is unique up to diagonal scaling of factors
- Provided row pivot sequence is same, if we have two LU factorizations $PA = LU = \hat{L}\hat{U}$, then $\hat{L}^{-1}L = \hat{U}U^{-1} = D$ is both lower and upper triangular, hence diagonal
- If both L and \hat{L} are unit lower triangular, then D must be identity matrix, so $L = \hat{L}$ and $U = \hat{U}$
- ▶ Uniqueness is made explicit in LDU factorization PA = LDU, with L unit lower triangular, U unit upper triangular, and D diagonal

Storage Management

- Elementary elimination matrices M_k, their inverses L_k, and permutation matrices P_k used in formal description of LU factorization process are not formed explicitly in actual implementation
- ▶ **U** overwrites upper triangle of **A**, multipliers in **L** overwrite strict lower triangle of **A**, and unit diagonal of **L** need not be stored
- Row interchanges usually are not done explicitly; auxiliary integer vector keeps track of row order in original locations

Complexity of Solving Linear Systems

- ▶ LU factorization requires about $n^3/3$ floating-point multiplications and similar number of additions
- Forward- and back-substitution for single right-hand-side vector together require about n² multiplications and similar number of additions
- Can also solve linear system by matrix inversion: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$
- ▶ Computing \mathbf{A}^{-1} is tantamount to solving n linear systems, requiring LU factorization of \mathbf{A} followed by n forward- and back-substitutions, one for each column of identity matrix
- ▶ Operation count for inversion is about n^3 , three times as expensive as LU factorization

Inversion vs. Factorization

- ► Even with many right-hand sides b, inversion never overcomes higher initial cost, since each matrix-vector multiplication A⁻¹b requires n² operations, similar to cost of forward- and back-substitution
- Inversion gives less accurate answer; for example, solving 3x = 18 by division gives x = 18/3 = 6, but inversion gives $x = 3^{-1} \times 18 = 0.333 \times 18 = 5.99$ using 3-digit arithmetic
- Matrix inverses often occur as convenient notation in formulas, but explicit inverse is rarely required to implement such formulas
- ► For example, product $A^{-1}B$ should be computed by LU factorization of A, followed by forward- and back-substitutions using each column of B

Gauss-Jordan Elimination

- In Gauss-Jordan elimination, matrix is reduced to diagonal rather than triangular form
- Row combinations are used to annihilate entries above as well as below diagonal
- Elimination matrix used for given column vector a is of form

$$\begin{bmatrix} 1 & \cdots & 0 & -m_1 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & -m_{k-1} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & -m_{k+1} & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & -m_n & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_{k-1} \\ a_k \\ a_{k+1} \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ a_k \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where $m_i = a_i/a_k$, $i = 1, \ldots, n$

Gauss-Jordan Elimination, continued

- ▶ Gauss-Jordan elimination requires about $n^3/2$ multiplications and similar number of additions, 50% more expensive than LU factorization
- During elimination phase, same row operations are also applied to right-hand-side vector (or vectors) of system of linear equations
- Once matrix is in diagonal form, components of solution are computed by dividing each entry of transformed right-hand side by corresponding diagonal entry of matrix
- ▶ Latter requires only *n* divisions, but this is not enough cheaper to offset more costly elimination phase

⟨ interactive example ⟩

Updating Solutions

Solving Modified Problems

- ► If right-hand side of linear system changes but matrix does not, then LU factorization need not be repeated to solve new system
- Only forward- and back-substitution need be repeated for new right-hand side
- ▶ This is substantial savings in work, since additional triangular solutions cost only $\mathcal{O}(n^2)$ work, in contrast to $\mathcal{O}(n^3)$ cost of factorization

Sherman-Morrison Formula

- ► Sometimes refactorization can be avoided even when matrix *does* change
- Sherman-Morrison formula gives inverse of matrix resulting from rank-one change to matrix whose inverse is already known

$$(\mathbf{A} - \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{u}(1 - \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u})^{-1}\mathbf{v}^T\mathbf{A}^{-1}$$

where \boldsymbol{u} and \boldsymbol{v} are n-vectors

▶ Evaluation of formula requires $\mathcal{O}(n^2)$ work (for matrix-vector multiplications) rather than $\mathcal{O}(n^3)$ work required for inversion

Rank-One Updating of Solution

► To solve linear system $(\mathbf{A} - \mathbf{u}\mathbf{v}^T)\mathbf{x} = \mathbf{b}$ with new matrix, use Sherman-Morrison formula to obtain

$$x = (A - uv^{T})^{-1}b$$

= $A^{-1}b + A^{-1}u(1 - v^{T}A^{-1}u)^{-1}v^{T}A^{-1}b$

which can be implemented by following steps

- ▶ Solve Az = u for z, so $z = A^{-1}u$
- ▶ Solve Ay = b for y, so $y = A^{-1}b$
- Compute $x = y + ((v^T y)/(1 v^T z))z$
- ▶ If **A** is already factored, procedure requires only triangular solutions and inner products, so only $\mathcal{O}(n^2)$ work and no explicit inverses

Example: Rank-One Updating of Solution

Consider rank-one modification

$$\begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

(with 3,2 entry changed) of system whose LU factorization was computed in earlier example

▶ One way to choose update vectors is

$$\mathbf{u} = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

so matrix of modified system is $\mathbf{A} - \mathbf{u}\mathbf{v}^T$

Example, continued

• Using LU factorization of \boldsymbol{A} to solve $\boldsymbol{A}\boldsymbol{z}=\boldsymbol{u}$ and $\boldsymbol{A}\boldsymbol{y}=\boldsymbol{b}$,

$$\mathbf{z} = egin{bmatrix} -3/2 \\ 1/2 \\ -1/2 \end{bmatrix} \quad \text{and} \quad \mathbf{y} = egin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$

Final step computes updated solution

$$\mathbf{x} = \mathbf{y} + \frac{\mathbf{v}^T \mathbf{y}}{1 - \mathbf{v}^T \mathbf{z}} \mathbf{z} = \begin{bmatrix} -1\\2\\2 \end{bmatrix} + \frac{2}{1 - 1/2} \begin{bmatrix} -3/2\\1/2\\-1/2 \end{bmatrix} = \begin{bmatrix} -7\\4\\0 \end{bmatrix}$$

 We have thus computed solution to modified system without factoring modified matrix Improving Accuracy

Scaling Linear Systems

- ▶ In principle, solution to linear system is unaffected by diagonal scaling of matrix and right-hand-side vector
- In practice, scaling affects both conditioning of matrix and selection of pivots in Gaussian elimination, which in turn affect numerical accuracy in finite-precision arithmetic
- It is usually best if all entries (or uncertainties in entries) of matrix have about same size
- Sometimes it may be obvious how to accomplish this by choice of measurement units for variables, but there is no foolproof method for doing so in general
- Scaling can introduce rounding errors if not done carefully

Example: Scaling

Linear system

$$\begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ \epsilon \end{bmatrix}$$

has condition number $1/\epsilon$, so is ill-conditioned if ϵ is small

- If second row is multiplied by $1/\epsilon$, then system becomes perfectly well-conditioned
- Apparent ill-conditioning was due purely to poor scaling
- ▶ In general, it is usually much less obvious how to correct poor scaling

Iterative Refinement

▶ Given approximate solution x_0 to linear system Ax = b, compute residual

$$\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$$

Now solve linear system $Az_0 = r_0$ and take

$$\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{z}_0$$

as new and "better" approximate solution, since

$$Ax_1 = A(x_0 + z_0) = Ax_0 + Az_0$$

= $(b - r_0) + r_0 = b$

 Process can be repeated to refine solution successively until convergence, potentially producing solution accurate to full machine precision

Iterative Refinement, continued

- ► Iterative refinement requires double storage, since both original matrix and its LU factorization are required
- Due to cancellation, residual usually must be computed with higher precision for iterative refinement to produce meaningful improvement
- ► For these reasons, iterative improvement is often impractical to use routinely, but it can still be useful in some circumstances
- For example, iterative refinement can sometimes stabilize otherwise unstable algorithm

Special Types of Linear Systems

Special Types of Linear Systems

- Work and storage can often be saved in solving linear system if matrix has special properties
- Examples include
 - **Symmetric**: $\mathbf{A} = \mathbf{A}^T$, $a_{ij} = a_{ji}$ for all i, j
 - Positive definite: $x^T A x > 0$ for all $x \neq 0$
 - ▶ Band: $a_{ij} = 0$ for all $|i j| > \beta$, where β is bandwidth of **A**
 - Sparse: most entries of A are zero

Symmetric Positive Definite Matrices

▶ If **A** is symmetric and positive definite, then LU factorization can be arranged so that $U = L^T$, which gives *Cholesky factorization*

$$A = L L^T$$

where \boldsymbol{L} is lower triangular with positive diagonal entries

- Algorithm for computing it can be derived by equating corresponding entries of **A** and **LL**^T
- ▶ In 2×2 case, for example,

$$\begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} \\ 0 & l_{22} \end{bmatrix}$$

implies

$$I_{11} = \sqrt{a_{11}}, \quad I_{21} = a_{21}/I_{11}, \quad I_{22} = \sqrt{a_{22} - I_{21}^2}$$

Cholesky Factorization

▶ One way to write resulting algorithm, in which Cholesky factor L overwrites lower triangle of original matrix A, is

```
for k = 1 to n
                                            { loop over columns }
    a_{kk} = \sqrt{a_{kk}}
    for i = k + 1 to n
        a_{ik} = a_{ik}/a_{kk}
                                            { scale current column }
    end
    for j = k + 1 to n
                                            { from each remaining column,
        for i = i to n
                                                subtract multiple
                                                of current column }
             a_{ii} = a_{ii} - a_{ik} \cdot a_{ik}
         end
    end
end
```

Cholesky Factorization, continued

- Features of Cholesky algorithm for symmetric positive definite matrices
 - All n square roots are of positive numbers, so algorithm is well defined
 - No pivoting is required to maintain numerical stability
 - Only lower triangle of A is accessed, and hence upper triangular portion need not be stored
 - ightharpoonup Only $n^3/6$ multiplications and similar number of additions are required
- Thus, Cholesky factorization requires only about half work and half storage compared with LU factorization of general matrix by Gaussian elimination, and also avoids need for pivoting

⟨ interactive example ⟩

Symmetric Indefinite Systems

- ► For symmetric indefinite **A**, Cholesky factorization is not applicable, and some form of pivoting is generally required for numerical stability
- Factorization of form

$$PAP^T = LDL^T$$

with \boldsymbol{L} unit lower triangular and \boldsymbol{D} either tridiagonal or block diagonal with 1×1 and 2×2 diagonal blocks, can be computed stably using symmetric pivoting strategy

▶ In either case, cost is comparable to that of Cholesky factorization

Band Matrices

- Gaussian elimination for band matrices differs little from general case — only ranges of loops change
- Typically matrix is stored in array by diagonals to avoid storing zero entries
- If pivoting is required for numerical stability, bandwidth can grow (but no more than double)
- General purpose solver for arbitrary bandwidth is similar to code for Gaussian elimination for general matrices
- For fixed small bandwidth, band solver can be extremely simple, especially if pivoting is not required for stability

Tridiagonal Matrices

► Consider tridiagonal matrix

$$\mathbf{A} = \begin{bmatrix} b_1 & c_1 & 0 & \cdots & 0 \\ a_2 & b_2 & c_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \cdots & 0 & a_n & b_n \end{bmatrix}$$

Gaussian elimination without pivoting reduces to

$$d_1 = b_1$$

for $i = 2$ to n
 $m_i = a_i/d_{i-1}$
 $d_i = b_i - m_i c_{i-1}$
end

Tridiagonal Matrices, continued

▶ LU factorization of **A** is then given by

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ m_2 & 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & m_{n-1} & 1 & 0 \\ 0 & \cdots & 0 & m_n & 1 \end{bmatrix}, \quad \boldsymbol{U} = \begin{bmatrix} d_1 & c_1 & 0 & \cdots & 0 \\ 0 & d_2 & c_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & d_{n-1} & c_{n-1} \\ 0 & \cdots & \cdots & 0 & d_n \end{bmatrix}$$

General Band Matrices

- ▶ In general, band system of bandwidth β requires $\mathcal{O}(\beta n)$ storage, and its factorization requires $\mathcal{O}(\beta^2 n)$ work
- ▶ Compared with full system, savings is substantial if $\beta \ll n$

Iterative Methods for Linear Systems

- Gaussian elimination is direct method for solving linear system, producing exact solution in finite number of steps (in exact arithmetic)
- Iterative methods begin with initial guess for solution and successively improve it until desired accuracy attained
- In theory, it might take infinite number of iterations to converge to exact solution, but in practice iterations are terminated when residual is as small as desired
- ► For some types of problems, iterative methods have significant advantages over direct methods
- We will study specific iterative methods later when we consider solution of partial differential equations

Software for Linear Systems

LINPACK and LAPACK

- ▶ LINPACK is software package for solving wide variety of systems of linear equations, both general dense systems and special systems, such as symmetric or banded
- Solving linear systems is of such fundamental importance in scientific computing that LINPACK has become standard benchmark for comparing performance of computers
- LAPACK is more recent replacement for LINPACK featuring higher performance on modern computer architectures, including many parallel computers
- Both LINPACK and LAPACK are available from Netlib.org
- ► Linear system solvers underlying MATLAB and Python's NumPy and SciPy libraries are based on LAPACK

BLAS - Basic Linear Algebra Subprograms

- ▶ High-level routines in LINPACK and LAPACK are based on lower-level Basic Linear Algebra Subprograms (BLAS)
- ▶ BLAS encapsulate basic operations on vectors and matrices so they can be optimized for given computer architecture while high-level routines that call them remain portable
- Higher-level BLAS encapsulate matrix-vector and matrix-matrix operations for better utilization of memory hierarchies such as cache and virtual memory with paging
- Generic versions of BLAS are available from Netlib.org, and many computer vendors provide custom versions optimized for their particular systems

Examples of BLAS

Level	Data	Work	Examples	Function
1	$\mathcal{O}(n)$	$\mathcal{O}(n)$	saxpy	Scalar imes vector + vector
			sdot	Inner product
			snrm2	Euclidean vector norm
2	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$	sgemv	Matrix-vector product
			strsv	Triangular solution
			sger	Rank-one update
3	$\mathcal{O}(n^2)$	$\mathcal{O}(n^3)$	sgemm	Matrix-matrix product
			strsm	Multiple triang. solutions
			ssyrk	Rank-k update

Level-3 BLAS have more opportunity for data reuse, and hence higher performance, because they perform more operations per data item than lower-level BLAS

Summary - Solving Linear Systems

- Solving linear systems is fundamental in scientific computing
- Sensitivity of solution to linear system is measured by cond(A)
- ► Triangular linear system is easily solved by successive substitution
- General linear system can be solved by transforming it to triangular form by Gaussian elimination (LU factorization)
- Pivoting is essential for stable implementation of Gaussian elimination
- Specialized algorithms and software are available for solving particular types of linear systems