CS 450 - Numerical Analysis

Chapter 2: Systems of Linear Equations ${ }^{\dagger}$

Prof. Michael T. Heath

Department of Computer Science
University of Illinois at Urbana-Champaign
heath@illinois.edu
January 28, 2019

[^0]
Systems of Linear Equations

Review: Matrix-Vector Product

$$
\begin{aligned}
\boldsymbol{A x} & =\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =\left[\frac{\left[\frac{a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n}}{a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n}}\right.}{\vdots}\left[\begin{array}{l}
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n}
\end{array}\right]\right. \\
& =x_{1}\left[\begin{array}{c}
a_{1,1} \\
a_{2,1} \\
\vdots \\
a_{m, 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{1,2} \\
a_{2,2} \\
\vdots \\
a_{m, 2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
a_{1, n} \\
a_{2, n} \\
\vdots \\
a_{m, n}
\end{array}\right]
\end{aligned}
$$

Definition: For $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \operatorname{span}(\boldsymbol{A})=\left\{\boldsymbol{A} \boldsymbol{x}: \boldsymbol{x} \in \mathbb{R}^{n}\right\}$

System of Linear Equations

$$
A x=b
$$

- Given $m \times n$ matrix \boldsymbol{A} and m-vector \boldsymbol{b}, find unknown n-vector \boldsymbol{x} satisfying $\boldsymbol{A x}=\boldsymbol{b}$
- System of equations asks whether \boldsymbol{b} can be expressed as linear combination of columns of \boldsymbol{A}, or equivalently, is $\boldsymbol{b} \in \operatorname{span}(\boldsymbol{A})$?
- If so, coefficients of linear combination are components of solution vector \boldsymbol{x}
- Solution may or may not exist, and may or may not be unique
- For now, we consider only square case, $m=n$

Singularity and Nonsingularity

$n \times n$ matrix \boldsymbol{A} is nonsingular if it has any of following equivalent properties

1. Inverse of \boldsymbol{A}, denoted by \boldsymbol{A}^{-1}, exists such that $\boldsymbol{A A}^{-1}=\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}$
2. $\operatorname{det}(\boldsymbol{A}) \neq 0$
3. $\operatorname{rank}(\boldsymbol{A})=n$
4. For any vector $\boldsymbol{z} \neq \mathbf{0}, \boldsymbol{A} \boldsymbol{z} \neq \mathbf{0}$

Existence and Uniqueness

- Existence and uniqueness of solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ depend on whether \boldsymbol{A} is singular or nonsingular
- Can also depend on b, but only in singular case
- If $\boldsymbol{b} \in \operatorname{span}(\boldsymbol{A})$, system is consistent

\boldsymbol{A}	\boldsymbol{b}	\# solutions
nonsingular	arbitrary	1
singular	$\boldsymbol{b} \in \operatorname{span}(\boldsymbol{A})$	∞
singular	$\boldsymbol{b} \notin \operatorname{span}(\boldsymbol{A})$	0

Geometric Interpretation

- In two dimensions, each equation determines straight line in plane
- Solution is intersection point of two straight lines, if any
- If two straight lines are not parallel (nonsingular), then their intersection point is unique solution
- If two straight lines are parallel (singular), then they either do not intersect (no solution) or else they coincide (any point along line is solution)
- In higher dimensions, each equation determines hyperplane; if matrix is nonsingular, intersection of hyperplanes is unique solution

Example: Nonsingularity

- 2×2 system

$$
\begin{aligned}
2 x_{1}+3 x_{2} & =b_{1} \\
5 x_{1}+4 x_{2} & =b_{2}
\end{aligned}
$$

or in matrix-vector notation

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ll}
2 & 3 \\
5 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\boldsymbol{b}
$$

is nonsingular and thus has unique solution regardless of value of \boldsymbol{b}

- For example, if $\boldsymbol{b}=\left[\begin{array}{ll}8 & 13\end{array}\right]^{T}$, then $\boldsymbol{x}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{T}$ is unique solution

Example: Singularity

- 2×2 system

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ll}
2 & 3 \\
4 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\boldsymbol{b}
$$

is singular regardless of value of \boldsymbol{b}

- With $\boldsymbol{b}=\left[\begin{array}{ll}4 & 7\end{array}\right]^{\top}$, there is no solution
- With $\boldsymbol{b}=\left[\begin{array}{ll}4 & 8\end{array}\right]^{T}, \boldsymbol{x}=\left[\begin{array}{ll}\gamma & (4-2 \gamma) / 3\end{array}\right]^{T}$ is solution for any real number γ, so there are infinitely many solutions

Norms and Condition Number

Vector Norms

- Magnitude (absolute value, modulus) for scalars generalizes to norm for vectors
- We will use only p-norms, defined by

$$
\|\boldsymbol{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

for integer $p>0$ and n-vector \boldsymbol{x}

- Important special cases
- 1-norm: $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- 2-norm: $\|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}$
- ∞-norm: $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$

Example: Vector Norms

- Drawing shows unit "circle" in two dimensions for each norm

- Norms have following values for vector shown

$$
\begin{gathered}
\|\boldsymbol{x}\|_{1}=2.8, \quad\|\boldsymbol{x}\|_{2}=2.0, \quad\|\boldsymbol{x}\|_{\infty}=1.6 \\
\langle\text { interactive example }\rangle
\end{gathered}
$$

Equivalence of Norms

- In general, for any vector \boldsymbol{x} in $\mathbb{R}^{n},\|\boldsymbol{x}\|_{1} \geq\|\boldsymbol{x}\|_{2} \geq\|\boldsymbol{x}\|_{\infty}$
- However, we also have
- $\|x\|_{1} \leq \sqrt{n} \cdot\|x\|_{2}$
- $\|x\|_{2} \leq \sqrt{n} \cdot\|x\|_{\infty}$
- $\|\boldsymbol{x}\|_{1} \leq n \cdot\|x\|_{\infty}$
- For given n, norms differ by at most a constant, and hence are equivalent: if one is small, all must be proportionally small
- Consequently, we can use whichever norm is most convenient in given context

Properties of Vector Norms

- For any vector norm
- $\|\boldsymbol{x}\|>0$ if $\boldsymbol{x} \neq \mathbf{0}$
- $\|\gamma \boldsymbol{x}\|=|\gamma| \cdot\|\boldsymbol{x}\|$ for any scalar γ
- $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\| \quad$ (triangle inequality)
- In more general treatment, these properties taken as definition of vector norm
- Useful variation on triangle inequality
- | \|x\| $\|=\| \boldsymbol{y}\|\mid \leq\| x-\boldsymbol{y} \|$

Matrix Norms

- Matrix norm induced by a given vector norm is defined by

$$
\|\boldsymbol{A}\|=\max _{x \neq 0} \frac{\|\boldsymbol{A} \boldsymbol{x}\|}{\|\boldsymbol{x}\|}
$$

- Norm of matrix measures maximum relative stretching matrix does to any vector in given vector norm

Example Matrix Norms

- Matrix norm induced by vector 1-norm is maximum absolute column sum

$$
\|\boldsymbol{A}\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

- Matrix norm induced by vector ∞-norm is maximum absolute row sum

$$
\|\boldsymbol{A}\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

- Handy way to remember these is that matrix norms agree with corresponding vector norms for $n \times 1$ matrix
- No simple formula for matrix 2-norm

Properties of Matrix Norms

- Any matrix norm satisfies
- $\|\boldsymbol{A}\|>0$ if $\boldsymbol{A} \neq \mathbf{0}$
- $\|\gamma \boldsymbol{A}\|=|\gamma| \cdot\|\boldsymbol{A}\|$ for any scalar γ
- $\|\boldsymbol{A}+\boldsymbol{B}\| \leq\|\boldsymbol{A}\|+\|\boldsymbol{B}\|$
- Matrix norms we have defined also satisfy
- $\|A B\| \leq\|A\| \cdot\|B\|$
- $\|\boldsymbol{A} \boldsymbol{x}\| \leq\|\boldsymbol{A}\| \cdot\|\boldsymbol{x}\|$ for any vector \boldsymbol{x}

Condition Number

- Condition number of square nonsingular matrix \boldsymbol{A} is defined by

$$
\operatorname{cond}(\boldsymbol{A})=\|\boldsymbol{A}\| \cdot\left\|\boldsymbol{A}^{-1}\right\|
$$

- By convention, $\operatorname{cond}(\boldsymbol{A})=\infty$ if \boldsymbol{A} is singular
- Since

$$
\|\boldsymbol{A}\| \cdot\left\|\boldsymbol{A}^{-1}\right\|=\left(\max _{x \neq 0} \frac{\|\boldsymbol{A} \boldsymbol{x}\|}{\|\boldsymbol{x}\|}\right) \cdot\left(\min _{x \neq 0} \frac{\|\boldsymbol{A} \boldsymbol{x}\|}{\|\boldsymbol{x}\|}\right)^{-1}
$$

condition number measures ratio of maximum stretching to maximum shrinking matrix does to any nonzero vectors

- Large cond (\boldsymbol{A}) means \boldsymbol{A} is nearly singular

Properties of Condition Number

- For any matrix $\boldsymbol{A}, \operatorname{cond}(\boldsymbol{A}) \geq 1$
- For identity matrix $\boldsymbol{I}, \operatorname{cond}(\boldsymbol{I})=1$
- For any matrix \boldsymbol{A} and scalar $\gamma, \operatorname{cond}(\gamma \boldsymbol{A})=\operatorname{cond}(\boldsymbol{A})$
- For any diagonal matrix $\boldsymbol{D}=\operatorname{diag}\left(d_{i}\right), \operatorname{cond}(\boldsymbol{D})=\frac{\max \left|d_{i}\right|}{\min \left|d_{i}\right|}$〈 interactive example 〉

Computing Condition Number

- Definition of condition number involves matrix inverse, so it is nontrivial to compute
- Computing condition number from definition would require much more work than computing solution whose accuracy is to be assessed
- In practice, condition number is estimated inexpensively as byproduct of solution process
- Matrix norm $\|\boldsymbol{A}\|$ is easily computed as maximum absolute column sum (or row sum, depending on norm used)
- Estimating $\left\|\boldsymbol{A}^{-1}\right\|$ at low cost is more challenging

Computing Condition Number, continued

- From properties of norms, if $\boldsymbol{A} \boldsymbol{z}=\boldsymbol{y}$, then

$$
\frac{\|\boldsymbol{z}\|}{\|\boldsymbol{y}\|} \leq\left\|\boldsymbol{A}^{-1}\right\|
$$

and this bound is achieved for optimally chosen \boldsymbol{y}

- Efficient condition estimators heuristically pick \boldsymbol{y} with large ratio $\|\boldsymbol{z}\| /\|\boldsymbol{y}\|$, yielding good estimate for $\left\|\boldsymbol{A}^{-1}\right\|$
- Good software packages for linear systems provide efficient and reliable condition estimator
- Condition number useful in assessing accuracy of approximate solution

Assessing Accuracy

Error Bounds

- Condition number yields error bound for approximate solution to linear system
- Let \boldsymbol{x} be solution to $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, and let $\hat{\boldsymbol{x}}$ be solution to $\boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{b}+\Delta \boldsymbol{b}$
- If $\Delta x=\hat{x}-\boldsymbol{x}$, then

$$
\boldsymbol{b}+\Delta \boldsymbol{b}=\boldsymbol{A}(\hat{x})=\boldsymbol{A}(x+\Delta x)=\boldsymbol{A x}+\boldsymbol{A} \Delta x
$$

which leads to bound

$$
\frac{\|\Delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\Delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|}
$$

for possible relative change in solution \boldsymbol{x} due to relative change in right-hand side \boldsymbol{b}

Error Bounds, continued

- Similar result holds for relative change in matrix: if $(\boldsymbol{A}+\boldsymbol{E}) \hat{\boldsymbol{x}}=\boldsymbol{b}$, then

$$
\frac{\|\Delta \boldsymbol{x}\|}{\|\hat{\boldsymbol{x}}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|}
$$

- If input data are accurate to machine precision, then bound for relative error in solution \boldsymbol{x} becomes

$$
\frac{\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \epsilon_{\mathrm{mach}}
$$

- Computed solution loses about $\log _{10}(\operatorname{cond}(\boldsymbol{A}))$ decimal digits of accuracy relative to accuracy of input

Error Bounds - Illustration

- In two dimensions, uncertainty in intersection point of two lines depends on whether lines are nearly parallel

well-conditioned

ill-conditioned

Error Bounds - Caveats

- Normwise analysis bounds relative error in largest components of solution; relative error in smaller components can be much larger
- Componentwise error bounds can be obtained, but are somewhat more complicated
- Conditioning of system is affected by relative scaling of rows or columns
- III-conditioning can result from poor scaling as well as near singularity
- Rescaling can help the former, but not the latter

Residual

- Residual vector of approximate solution $\hat{\boldsymbol{x}}$ to linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ is defined by

$$
\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A} \hat{\boldsymbol{x}}
$$

- In theory, if \boldsymbol{A} is nonsingular, then $\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|=0$ if, and only if, $\|\boldsymbol{r}\|=0$, but they are not necessarily small simultaneously
- Since

$$
\frac{\|\Delta \boldsymbol{x}\|}{\|\hat{\boldsymbol{x}}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\| \cdot\|\hat{\boldsymbol{x}}\|}
$$

small relative residual implies small relative error in approximate solution only if \boldsymbol{A} is well-conditioned

Residual, continued

- If computed solution $\hat{\boldsymbol{x}}$ exactly satisfies

$$
(A+E) \hat{x}=b
$$

then

$$
\frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\|\|\hat{\boldsymbol{x}}\|} \leq \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|}
$$

so large relative residual implies large backward error in matrix, and algorithm used to compute solution is unstable

- Stable algorithm yields small relative residual regardless of conditioning of nonsingular system
- Small residual is easy to obtain, but does not necessarily imply computed solution is accurate

Example: Small Residual

- For linear system

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ll}
0.913 & 0.659 \\
0.457 & 0.330
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0.254 \\
0.127
\end{array}\right]=\boldsymbol{b}
$$

consider two approximate solutions

$$
\hat{\mathbf{x}}_{1}=\left[\begin{array}{c}
0.6391 \\
-0.5
\end{array}\right], \quad \hat{\mathbf{x}}_{2}=\left[\begin{array}{r}
0.999 \\
-1.001
\end{array}\right]
$$

- Norms of respective residuals are

$$
\left\|\boldsymbol{r}_{1}\right\|_{1}=7.0 \times 10^{-5}, \quad\left\|\boldsymbol{r}_{2}\right\|_{1}=2.4 \times 10^{-2}
$$

- Exact solution is $\boldsymbol{x}=[1,-1]^{T}$, so $\hat{\boldsymbol{x}}_{2}$ is much more accurate than $\hat{\boldsymbol{x}}_{1}$, despite having much larger residual
- \boldsymbol{A} is ill-conditioned $\left(\operatorname{cond}(\boldsymbol{A})>10^{4}\right)$, so small residual does not imply small error

Solving Linear Systems

Solving Linear Systems

- General strategy: To solve linear system, transform it into one whose solution is same but easier to compute
- What type of transformation of linear system leaves solution unchanged?
- We can premultiply (from left) both sides of linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ by any nonsingular matrix M without affecting solution
- Solution to $\boldsymbol{M A x}=\mathbf{M b}$ is given by

$$
\boldsymbol{x}=(\boldsymbol{M A})^{-1} \boldsymbol{M} \boldsymbol{b}=\boldsymbol{A}^{-1} \boldsymbol{M}^{-1} \boldsymbol{M} \boldsymbol{b}=\boldsymbol{A}^{-1} \boldsymbol{b}
$$

Example: Permutations

- Permutation matrix \boldsymbol{P} has one 1 in each row and column and zeros elsewhere, i.e., identity matrix with rows or columns permuted
- \boldsymbol{P}^{T} reverses permutation, so $\boldsymbol{P}^{-1}=\boldsymbol{P}^{T}$
- Premultiplying both sides of system by permutation matrix, $\boldsymbol{P A x}=\boldsymbol{P b}$, reorders rows, but solution \boldsymbol{x} is unchanged
- Postmultiplying \boldsymbol{A} by permutation matrix, $\boldsymbol{A P x}=\boldsymbol{b}$, reorders columns, which permutes components of original solution

$$
\boldsymbol{x}=(\boldsymbol{A} \boldsymbol{P})^{-1} \boldsymbol{b}=\boldsymbol{P}^{-1} \boldsymbol{A}^{-1} \boldsymbol{b}=\boldsymbol{P}^{T}\left(\boldsymbol{A}^{-1} \boldsymbol{b}\right)
$$

Example: Diagonal Scaling

- Row scaling: premultiplying both sides of system by nonsingular diagonal matrix $\boldsymbol{D}, \boldsymbol{D A} \boldsymbol{x}=\boldsymbol{D} \boldsymbol{b}$, multiplies each row of matrix and right-hand side by corresponding diagonal entry of \boldsymbol{D}, but solution \boldsymbol{x} is unchanged
- Column scaling: postmultiplying \boldsymbol{A} by $\boldsymbol{D}, \boldsymbol{A} \boldsymbol{D} \boldsymbol{x}=\boldsymbol{b}$, multiplies each column of matrix by corresponding diagonal entry of \boldsymbol{D}, which rescales original solution

$$
\boldsymbol{x}=(\boldsymbol{A D})^{-1} \boldsymbol{b}=\boldsymbol{D}^{-1} \boldsymbol{A}^{-1} \boldsymbol{b}
$$

Triangular Linear Systems

- What type of linear system is easy to solve?
- If one equation in system involves only one component of solution (i.e., only one entry in that row of matrix is nonzero), then that component can be computed by division
- If another equation in system involves only one additional solution component, then by substituting one known component into it, we can solve for other component
- If this pattern continues, with only one new solution component per equation, then all components of solution can be computed in succession.
- System with this property is called triangular

Triangular Matrices

- Two specific triangular forms are of particular interest
- lower triangular: all entries above main diagonal are zero, $a_{i j}=0$ for $i<j$
- upper triangular: all entries below main diagonal are zero, $a_{i j}=0$ for $i>j$
- Successive substitution process described earlier is especially easy to formulate for lower or upper triangular systems
- Any triangular matrix can be permuted into upper or lower triangular form by suitable row permutation

Forward-Substitution

- Forward-substitution for lower triangular system $\boldsymbol{L x}=\boldsymbol{b}$

$$
x_{1}=b_{1} / \ell_{11}, \quad x_{i}=\left(b_{i}-\sum_{j=1}^{i-1} \ell_{i j} x_{j}\right) / \ell_{i i}, \quad i=2, \ldots, n
$$

```
for j=1 to n
```



```
    x}=\mp@subsup{b}{j}{}/\mp@subsup{\ell}{jj}{
    for i=j+1 to n
        bi}=\mp@subsup{b}{i}{}-\mp@subsup{\ell}{ij}{}\mp@subsup{x}{j}{
    end
end
```


Back-Substitution

- Back-substitution for upper triangular system $\boldsymbol{U x}=\boldsymbol{b}$

$$
x_{n}=b_{n} / u_{n n}, \quad x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n-1, \ldots, 1
$$

for $j=n$ to 1
if $u_{j j}=0$ then stop
$x_{j}=b_{j} / u_{j j}$
for $i=1$ to $j-1$
$b_{i}=b_{i}-u_{i j} x_{j}$
end
end
\{ loop backwards over columns \}
\{ stop if matrix is singular \}
\{ compute solution component \}
\{ update right-hand side \}

Example: Triangular Linear System

$$
\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]
$$

- Using back-substitution for this upper triangular system, last equation, $4 x_{3}=8$, is solved directly to obtain $x_{3}=2$
- Next, x_{3} is substituted into second equation to obtain $x_{2}=2$
- Finally, both x_{3} and x_{2} are substituted into first equation to obtain $x_{1}=-1$

Elementary Elimination Matrices

Elimination

- To transform general linear system into triangular form, need to replace selected nonzero entries of matrix by zeros
- This can be accomplished by taking linear combinations of rows
- Consider 2-vector $\boldsymbol{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$
- If $a_{1} \neq 0$, then

$$
\left[\begin{array}{cc}
1 & 0 \\
-a_{2} / a_{1} & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
0
\end{array}\right]
$$

Elementary Elimination Matrices

- More generally, we can annihilate all entries below k th position in n-vector \boldsymbol{a} by transformation

$$
\boldsymbol{M}_{k} \mathbf{a}=\left[\begin{array}{cccccc}
1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & -m_{n} & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k} \\
a_{k+1} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $m_{i}=a_{i} / a_{k}, i=k+1, \ldots, n$

- Divisor a_{k}, called pivot, must be nonzero
- Matrix $\boldsymbol{M}_{\boldsymbol{k}}$, called elementary elimination matrix, adds multiple of row k to each subsequent row, with multipliers m_{i} chosen so that result is zero

Elementary Elimination Matrices, continued

- $\boldsymbol{M}_{\boldsymbol{k}}$ is unit lower triangular and nonsingular
- $\boldsymbol{M}_{k}=\boldsymbol{I}-\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}$, where $\boldsymbol{m}_{k}=\left[0, \ldots, 0, m_{k+1}, \ldots, m_{n}\right]^{T}$ and \boldsymbol{e}_{k} is k th column of identity matrix
- $\boldsymbol{M}_{k}^{-1}=\boldsymbol{I}+\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}$, which means $\boldsymbol{M}_{k}^{-1}=\boldsymbol{L}_{k}$ is same as \boldsymbol{M}_{k} except signs of multipliers are reversed
- If $\boldsymbol{M}_{\boldsymbol{j}}, \boldsymbol{j}>k$, is another elementary elimination matrix, with vector of multipliers \boldsymbol{m}_{j}, then

$$
\begin{aligned}
\boldsymbol{M}_{k} \boldsymbol{M}_{j} & =\boldsymbol{I}-\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}-\boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T}+\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T} \boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T} \\
& =\boldsymbol{I}-\boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T}-\boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T}
\end{aligned}
$$

which means their product is essentially their "union" and similarly for product of inverses, $\boldsymbol{L}_{k} \boldsymbol{L}_{j}$

Example: Elementary Elimination Matrices

- For $\boldsymbol{a}=\left[\begin{array}{r}2 \\ 4 \\ -2\end{array}\right]$,

$$
\boldsymbol{M}_{1} \boldsymbol{a}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]
$$

and

$$
\boldsymbol{M}_{2} \boldsymbol{a}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 / 2 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
4 \\
-2
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]
$$

Example, continued

- Note that

$$
\boldsymbol{L}_{1}=\boldsymbol{M}_{1}^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], \quad \boldsymbol{L}_{2}=\boldsymbol{M}_{2}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 / 2 & 1
\end{array}\right]
$$

and

$$
\boldsymbol{M}_{1} \boldsymbol{M}_{2}=\left[\begin{array}{rcc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 1 / 2 & 1
\end{array}\right], \quad \boldsymbol{L}_{1} \boldsymbol{L}_{2}=\left[\begin{array}{rcc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -1 / 2 & 1
\end{array}\right]
$$

LU Factorization by Gaussian Elimination

Gaussian Elimination

- To reduce general linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ to upper triangular form, first choose \boldsymbol{M}_{1}, with a_{11} as pivot, to annihilate first column of \boldsymbol{A} below first row
- System becomes $M_{1} \boldsymbol{A x}=M_{1} \boldsymbol{b}$, but solution is unchanged
- Next choose \boldsymbol{M}_{2}, using a_{22} as pivot, to annihilate second column of $M_{1} \boldsymbol{A}$ below second row
- System becomes $M_{2} M_{1} \boldsymbol{A x}=M_{2} M_{1} \boldsymbol{b}$, but solution is still unchanged
- Process continues for each successive column until all subdiagonal entries have been zeroed
- Resulting upper triangular linear system

$$
\begin{aligned}
M_{n-1} \cdots M_{1} \boldsymbol{A x} & =M_{n-1} \cdots M_{1} \boldsymbol{b} \\
M A x & =M b
\end{aligned}
$$

can be solved by back-substitution to obtain solution to original linear system $\boldsymbol{A x}=\boldsymbol{b}$

- Process just described is called Gaussian elimination

LU Factorization

- Product $\boldsymbol{L}_{k} \boldsymbol{L}_{j}$ is unit lower triangular if $k<j$, so

$$
\boldsymbol{L}=\boldsymbol{M}^{-1}=\boldsymbol{M}_{1}^{-1} \cdots \boldsymbol{M}_{n-1}^{-1}=\boldsymbol{L}_{1} \cdots \boldsymbol{L}_{n-1}
$$

is unit lower triangular

- By design, $\mathbf{M A}=\boldsymbol{U}$ is upper triangular
- So we have

$$
A=L U
$$

with \boldsymbol{L} unit lower triangular and \boldsymbol{U} upper triangular

- Thus, Gaussian elimination produces $L U$ factorization of matrix into triangular factors

LU Factorization, continued

- Having obtained LU factorization $\boldsymbol{A}=\boldsymbol{L U}$, equation $\boldsymbol{A x}=\boldsymbol{b}$ becomes

$$
L U x=b
$$

which can be solved by

- solving lower triangular system $\boldsymbol{L} \boldsymbol{y}=\boldsymbol{b}$ for \boldsymbol{y} by forward-substitution
- then solving upper triangular system $\boldsymbol{U x}=\boldsymbol{y}$ for \boldsymbol{x} by back-substitution
- Note that $\boldsymbol{y}=\boldsymbol{M b}$ is same as transformed right-hand side in Gaussian elimination
- Gaussian elimination and LU factorization are two ways of expressing same solution process

LU Factorization by Gaussian Elimination

```
for \(k=1\) to \(n-1\)
    if \(a_{k k}=0\) then stop
    for \(i=k+1\) to \(n\)
        \(m_{i k}=a_{i k} / a_{k k}\)
    end
    for \(j=k+1\) to \(n\)
        for \(i=k+1\) to \(n\)
        \(a_{i j}=a_{i j}-m_{i k} a_{k j}\)
        end
    end
end
```

\{ loop over columns \}
\{ stop if pivot is zero \}
\{ compute multipliers for current column \}
\{ apply transformation to remaining submatrix $\}$

Example: Gaussian Elimination

- Use Gaussian elimination to solve linear system

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
2 \\
8 \\
10
\end{array}\right]=\boldsymbol{b}
$$

- To annihilate subdiagonal entries of first column of \boldsymbol{A},

$$
\begin{gathered}
\boldsymbol{M}_{1} \boldsymbol{A}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right]=\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 1 & 5
\end{array}\right], \\
\boldsymbol{M}_{1} \boldsymbol{b}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
8 \\
10
\end{array}\right]=\left[\begin{array}{r}
2 \\
4 \\
12
\end{array}\right]
\end{gathered}
$$

Example, continued

- To annihilate subdiagonal entry of second column of $\boldsymbol{M}_{1} \boldsymbol{A}$,

$$
\begin{gathered}
\boldsymbol{M}_{2} \boldsymbol{M}_{1} \boldsymbol{A}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 1 & 5
\end{array}\right]=\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]=\boldsymbol{U}, \\
\boldsymbol{M}_{2} \boldsymbol{M}_{1} \boldsymbol{b}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
4 \\
12
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]=\boldsymbol{M} \boldsymbol{b}
\end{gathered}
$$

- We have reduced original system to equivalent upper triangular system

$$
\boldsymbol{U} \boldsymbol{x}=\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]=\boldsymbol{M} \boldsymbol{b}
$$

which can now be solved by back-substitution to obtain $\boldsymbol{x}=\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right]$

Example, continued

- To write out LU factorization explicitly,

$$
\boldsymbol{L}_{1} \boldsymbol{L}_{2}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]=\boldsymbol{L}
$$

so that

$$
\boldsymbol{A}=\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -3 & 7
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]=\boldsymbol{L} \boldsymbol{U}
$$

Pivoting

Row Interchanges

- Gaussian elimination breaks down if leading diagonal entry of remaining unreduced matrix is zero at any stage
- Easy fix: if diagonal entry in column k is zero, then interchange row k with some subsequent row having nonzero entry in column k and then proceed as usual
- If there is no nonzero on or below diagonal in column k, then there is nothing to do at this stage, so skip to next column
- Zero on diagonal causes resulting upper triangular matrix \boldsymbol{U} to be singular, but LU factorization can still be completed
- Subsequent back-substitution will fail, however, as it should for singular matrix

Partial Pivoting

- In principle, any nonzero value will do as pivot, but in practice pivot should be chosen to minimize error propagation
- To avoid amplifying previous rounding errors when multiplying remaining portion of matrix by elementary elimination matrix, multipliers should not exceed 1 in magnitude
- This can be accomplished by choosing entry of largest magnitude on or below diagonal as pivot at each stage
- Such partial pivoting is essential in practice for numerically stable implementation of Gaussian elimination for general linear systems

LU Factorization with Partial Pivoting

- With partial pivoting, each $\boldsymbol{M}_{\boldsymbol{k}}$ is preceded by permutation \boldsymbol{P}_{k} to interchange rows to bring entry of largest magnitude into diagonal pivot position
- Still obtain $\boldsymbol{M A}=\boldsymbol{U}$, with \boldsymbol{U} upper triangular, but now

$$
\boldsymbol{M}=\boldsymbol{M}_{n-1} \boldsymbol{P}_{n-1} \cdots \boldsymbol{M}_{1} \boldsymbol{P}_{1}
$$

- $\boldsymbol{L}=\boldsymbol{M}^{-1}$ is still triangular in general sense, but not necessarily lower triangular
- Alternatively, we can write

$$
P A=L U
$$

where $\boldsymbol{P}=\boldsymbol{P}_{n-1} \cdots \boldsymbol{P}_{1}$ permutes rows of \boldsymbol{A} into order determined by partial pivoting, and now \boldsymbol{L} is lower triangular

Complete Pivoting

- Complete pivoting is more exhaustive strategy in which largest entry in entire remaining unreduced submatrix is permuted into diagonal pivot position
- Requires interchanging columns as well as rows, leading to factorization

$$
P A Q=L U
$$

with \boldsymbol{L} unit lower triangular, \boldsymbol{U} upper triangular, and \boldsymbol{P} and \boldsymbol{Q} permutations

- Numerical stability of complete pivoting is theoretically superior, but pivot search is more expensive than for partial pivoting
- Numerical stability of partial pivoting is more than adequate in practice, so it is almost always used in solving linear systems by Gaussian elimination

Example: Pivoting

- Need for pivoting has nothing to do with whether matrix is singular or nearly singular
- For example,

$$
\boldsymbol{A}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

is nonsingular yet has no LU factorization unless rows are interchanged, whereas

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

is singular yet has LU factorization

Example: Small Pivots

- To illustrate effect of small pivots, consider

$$
\boldsymbol{A}=\left[\begin{array}{ll}
\epsilon & 1 \\
1 & 1
\end{array}\right]
$$

where ϵ is positive number smaller than $\epsilon_{\text {mach }}$

- If rows are not interchanged, then pivot is ϵ and multiplier is $-1 / \epsilon$, so

$$
\begin{aligned}
\boldsymbol{M} & =\left[\begin{array}{cc}
1 & 0 \\
-1 / \epsilon & 1
\end{array}\right], \quad \boldsymbol{L}=\left[\begin{array}{cc}
1 & 0 \\
1 / \epsilon & 1
\end{array}\right], \\
\boldsymbol{U} & =\left[\begin{array}{cc}
\epsilon & 1 \\
0 & 1-1 / \epsilon
\end{array}\right]=\left[\begin{array}{cc}
\epsilon & 1 \\
0 & -1 / \epsilon
\end{array}\right]
\end{aligned}
$$

in floating-point arithmetic, but then

$$
\boldsymbol{L} \boldsymbol{U}=\left[\begin{array}{cc}
1 & 0 \\
1 / \epsilon & 1
\end{array}\right]\left[\begin{array}{cc}
\epsilon & 1 \\
0 & -1 / \epsilon
\end{array}\right]=\left[\begin{array}{ll}
\epsilon & 1 \\
1 & 0
\end{array}\right] \neq \boldsymbol{A}
$$

Example, continued

- Using small pivot, and correspondingly large multiplier, has caused loss of information in transformed matrix
- If rows interchanged, then pivot is 1 and multiplier is $-\epsilon$, so

$$
\begin{gathered}
\boldsymbol{M}=\left[\begin{array}{cc}
1 & 0 \\
-\epsilon & 1
\end{array}\right], \quad \boldsymbol{L}=\left[\begin{array}{ll}
1 & 0 \\
\epsilon & 1
\end{array}\right], \\
\boldsymbol{U}=\left[\begin{array}{cc}
1 & 1 \\
0 & 1-\epsilon
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

in floating-point arithmetic

- Thus,

$$
\boldsymbol{L} \boldsymbol{U}=\left[\begin{array}{ll}
1 & 0 \\
\epsilon & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
\epsilon & 1
\end{array}\right]
$$

which is correct after permutation

Pivoting, continued

- Although pivoting is generally required for stability of Gaussian elimination, pivoting is not required for some important classes of matrices
- Diagonally dominant

$$
\sum_{i=1, i \neq j}^{n}\left|a_{i j}\right|<\left|a_{j j}\right|, \quad j=1, \ldots, n
$$

- Symmetric positive definite

$$
\boldsymbol{A}=\boldsymbol{A}^{T} \quad \text { and } \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}>0 \text { for all } \boldsymbol{x} \neq \mathbf{0}
$$

Residual

Residual

- Residual $\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A} \hat{\boldsymbol{x}}$ for solution $\hat{\boldsymbol{x}}$ computed using Gaussian elimination satisfies

$$
\frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\|\|\hat{\boldsymbol{x}}\|} \leq \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|} \leq \rho n^{2} \epsilon_{\mathrm{mach}}
$$

where \boldsymbol{E} is backward error in matrix \boldsymbol{A} and growth factor ρ is ratio of largest entry of \boldsymbol{U} to largest entry of \boldsymbol{A}

- Without pivoting, ρ can be arbitrarily large, so Gaussian elimination without pivoting is unstable
- With partial pivoting, ρ can still be as large as 2^{n-1}, but such behavior is extremely rare

Residual, continued

- There is little or no growth in practice, so

$$
\frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\|\|\hat{\boldsymbol{x}}\|} \leq \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|} \lesssim n \epsilon_{\mathrm{mach}}
$$

which means Gaussian elimination with partial pivoting yields small relative residual regardless of conditioning of system

- Thus, small relative residual does not necessarily imply computed solution is close to "true" solution unless system is well-conditioned
- Complete pivoting yields even smaller growth factor, but additional margin of stability is not usually worth extra cost

Example: Small Residual

- Use 4-digit decimal arithmetic to solve

$$
\left[\begin{array}{ll}
0.913 & 0.659 \\
0.457 & 0.330
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0.254 \\
0.127
\end{array}\right]
$$

- Gaussian elimination with partial pivoting yields triangular system

$$
\left[\begin{array}{cc}
0.9130 & 0.6590 \\
0 & 0.0002
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{r}
0.2540 \\
-0.0001
\end{array}\right]
$$

- Back-substitution then gives solution

$$
\hat{\boldsymbol{x}}=\left[\begin{array}{ll}
0.6391 & -0.5
\end{array}\right]^{T}
$$

- Exact residual norm for this solution is 7.04×10^{-5}, as small as we can expect using 4-digit arithmetic

Example, continued

- But exact solution is

$$
x=\left[\begin{array}{ll}
1.00 & 1.00
\end{array}\right]^{T}
$$

so error is almost as large as solution

- Cause of this phenomenon is that matrix is nearly singular $\left(\operatorname{cond}(\boldsymbol{A})>10^{4}\right)$
- Division that determines x_{2} is between two quantities that are both on order of rounding error, and hence result is essentially arbitrary
- When arbitrary value for x_{2} is substituted into first equation, value for x_{1} is computed so that first equation is satisfied, yielding small residual, but poor solution

Implementing Gaussian Elimination

Implementing Gaussian Elimination

- Gaussian elimination has general form of triple-nested loop

- Indices i, j, and k of for loops can be taken in any order, for total of $3!=6$ different arrangements
- These variations have different memory access patterns, which may cause their performance to vary widely on different computers

Uniqueness of LU Factorization

- Despite variations in computing it, LU factorization is unique up to diagonal scaling of factors
- Provided row pivot sequence is same, if we have two LU factorizations $\boldsymbol{P A}=\boldsymbol{L} \boldsymbol{U}=\hat{\boldsymbol{L}} \hat{\boldsymbol{U}}$, then $\hat{\boldsymbol{L}}^{-1} \boldsymbol{L}=\hat{\boldsymbol{U}} \boldsymbol{U}^{-1}=\boldsymbol{D}$ is both lower and upper triangular, hence diagonal
- If both \boldsymbol{L} and $\hat{\boldsymbol{L}}$ are unit lower triangular, then \boldsymbol{D} must be identity matrix, so $\boldsymbol{L}=\hat{\boldsymbol{L}}$ and $\boldsymbol{U}=\hat{\boldsymbol{U}}$
- Uniqueness is made explicit in LDU factorization $P A=\boldsymbol{L D U}$, with L unit lower triangular, \boldsymbol{U} unit upper triangular, and \boldsymbol{D} diagonal

Storage Management

- Elementary elimination matrices $\boldsymbol{M}_{\boldsymbol{k}}$, their inverses $\boldsymbol{L}_{\boldsymbol{k}}$, and permutation matrices \boldsymbol{P}_{k} used in formal description of LU factorization process are not formed explicitly in actual implementation
- U overwrites upper triangle of \boldsymbol{A}, multipliers in \boldsymbol{L} overwrite strict lower triangle of \boldsymbol{A}, and unit diagonal of \boldsymbol{L} need not be stored
- Row interchanges usually are not done explicitly; auxiliary integer vector keeps track of row order in original locations

Complexity of Solving Linear Systems

- LU factorization requires about $n^{3} / 3$ floating-point multiplications and similar number of additions
- Forward- and back-substitution for single right-hand-side vector together require about n^{2} multiplications and similar number of additions
- Can also solve linear system by matrix inversion: $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{b}$
- Computing \boldsymbol{A}^{-1} is tantamount to solving n linear systems, requiring LU factorization of \boldsymbol{A} followed by n forward- and back-substitutions, one for each column of identity matrix
- Operation count for inversion is about n^{3}, three times as expensive as LU factorization

Inversion vs. Factorization

- Even with many right-hand sides \boldsymbol{b}, inversion never overcomes higher initial cost, since each matrix-vector multiplication $\boldsymbol{A}^{-1} \boldsymbol{b}$ requires n^{2} operations, similar to cost of forward- and back-substitution
- Inversion gives less accurate answer; for example, solving $3 x=18$ by division gives $x=18 / 3=6$, but inversion gives $x=3^{-1} \times 18=0.333 \times 18=5.99$ using 3-digit arithmetic
- Matrix inverses often occur as convenient notation in formulas, but explicit inverse is rarely required to implement such formulas
- For example, product $\boldsymbol{A}^{-1} \boldsymbol{B}$ should be computed by LU factorization of \boldsymbol{A}, followed by forward- and back-substitutions using each column of \boldsymbol{B}

Gauss-Jordan Elimination

- In Gauss-Jordan elimination, matrix is reduced to diagonal rather than triangular form
- Row combinations are used to annihilate entries above as well as below diagonal
- Elimination matrix used for given column vector \boldsymbol{a} is of form

$$
\left[\begin{array}{ccccccc}
1 & \cdots & 0 & -m_{1} & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & -m_{k-1} & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & -m_{k+1} & 1 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & -m_{n} & 0 & \cdots & 1
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{k-1} \\
a_{k} \\
a_{k+1} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
a_{k} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $m_{i}=a_{i} / a_{k}, i=1, \ldots, n$

Gauss-Jordan Elimination, continued

- Gauss-Jordan elimination requires about $n^{3} / 2$ multiplications and similar number of additions, 50% more expensive than LU factorization
- During elimination phase, same row operations are also applied to right-hand-side vector (or vectors) of system of linear equations
- Once matrix is in diagonal form, components of solution are computed by dividing each entry of transformed right-hand side by corresponding diagonal entry of matrix
- Latter requires only n divisions, but this is not enough cheaper to offset more costly elimination phase

Updating Solutions

Solving Modified Problems

- If right-hand side of linear system changes but matrix does not, then LU factorization need not be repeated to solve new system
- Only forward- and back-substitution need be repeated for new right-hand side
- This is substantial savings in work, since additional triangular solutions cost only $\mathcal{O}\left(n^{2}\right)$ work, in contrast to $\mathcal{O}\left(n^{3}\right)$ cost of factorization

Sherman-Morrison Formula

- Sometimes refactorization can be avoided even when matrix does change
- Sherman-Morrison formula gives inverse of matrix resulting from rank-one change to matrix whose inverse is already known

$$
\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}\right)^{-1}=\boldsymbol{A}^{-1}+\boldsymbol{A}^{-1} \boldsymbol{u}\left(1-\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{A}^{-1} \boldsymbol{u}\right)^{-1} \boldsymbol{v}^{\top} \boldsymbol{A}^{-1}
$$

where \boldsymbol{u} and \boldsymbol{v} are n-vectors

- Evaluation of formula requires $\mathcal{O}\left(n^{2}\right)$ work (for matrix-vector multiplications) rather than $\mathcal{O}\left(n^{3}\right)$ work required for inversion

Rank-One Updating of Solution

- To solve linear system $\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}\right) \boldsymbol{x}=\boldsymbol{b}$ with new matrix, use Sherman-Morrison formula to obtain

$$
\begin{aligned}
\boldsymbol{x} & =\left(\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{T}\right)^{-1} \boldsymbol{b} \\
& =\boldsymbol{A}^{-1} \boldsymbol{b}+\boldsymbol{A}^{-1} \boldsymbol{u}\left(1-\boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{u}\right)^{-1} \boldsymbol{v}^{T} \boldsymbol{A}^{-1} \boldsymbol{b}
\end{aligned}
$$

which can be implemented by following steps

- Solve $\boldsymbol{A} \boldsymbol{z}=\boldsymbol{u}$ for \boldsymbol{z}, so $\boldsymbol{z}=\boldsymbol{A}^{-1} \boldsymbol{u}$
- Solve $\boldsymbol{A} \boldsymbol{y}=\boldsymbol{b}$ for \boldsymbol{y}, so $\boldsymbol{y}=\boldsymbol{A}^{-1} \boldsymbol{b}$
- Compute $\boldsymbol{x}=\boldsymbol{y}+\left(\left(\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{y}\right) /\left(1-\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{z}\right)\right) \boldsymbol{z}$
- If \boldsymbol{A} is already factored, procedure requires only triangular solutions and inner products, so only $\mathcal{O}\left(n^{2}\right)$ work and no explicit inverses

Example: Rank-One Updating of Solution

- Consider rank-one modification

$$
\left[\begin{array}{rrr}
2 & 4 & -2 \\
4 & 9 & -3 \\
-2 & -1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
2 \\
8 \\
10
\end{array}\right]
$$

(with 3, 2 entry changed) of system whose LU factorization was computed in earlier example

- One way to choose update vectors is

$$
\boldsymbol{u}=\left[\begin{array}{r}
0 \\
0 \\
-2
\end{array}\right] \quad \text { and } \quad \boldsymbol{v}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

so matrix of modified system is $\boldsymbol{A}-\boldsymbol{u} \boldsymbol{v}^{\top}$

Example, continued

- Using LU factorization of \boldsymbol{A} to solve $\boldsymbol{A z}=\boldsymbol{u}$ and $\boldsymbol{A y}=\boldsymbol{b}$,

$$
\boldsymbol{z}=\left[\begin{array}{r}
-3 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right] \quad \text { and } \quad \boldsymbol{y}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]
$$

- Final step computes updated solution

$$
\boldsymbol{x}=\boldsymbol{y}+\frac{\boldsymbol{v}^{\top} \boldsymbol{y}}{1-\boldsymbol{v}^{\top} \boldsymbol{z}} \boldsymbol{z}=\left[\begin{array}{r}
-1 \\
2 \\
2
\end{array}\right]+\frac{2}{1-1 / 2}\left[\begin{array}{r}
-3 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right]=\left[\begin{array}{r}
-7 \\
4 \\
0
\end{array}\right]
$$

- We have thus computed solution to modified system without factoring modified matrix

Improving Accuracy

Scaling Linear Systems

- In principle, solution to linear system is unaffected by diagonal scaling of matrix and right-hand-side vector
- In practice, scaling affects both conditioning of matrix and selection of pivots in Gaussian elimination, which in turn affect numerical accuracy in finite-precision arithmetic
- It is usually best if all entries (or uncertainties in entries) of matrix have about same size
- Sometimes it may be obvious how to accomplish this by choice of measurement units for variables, but there is no foolproof method for doing so in general
- Scaling can introduce rounding errors if not done carefully

Example: Scaling

- Linear system

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & \epsilon
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
\epsilon
\end{array}\right]
$$

has condition number $1 / \epsilon$, so is ill-conditioned if ϵ is small

- If second row is multiplied by $1 / \epsilon$, then system becomes perfectly well-conditioned
- Apparent ill-conditioning was due purely to poor scaling
- In general, it is usually much less obvious how to correct poor scaling

Iterative Refinement

- Given approximate solution \boldsymbol{x}_{0} to linear system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, compute residual

$$
\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} x_{0}
$$

- Now solve linear system $\boldsymbol{A z} \boldsymbol{z}_{0}=\boldsymbol{r}_{0}$ and take

$$
x_{1}=x_{0}+z_{0}
$$

as new and "better" approximate solution, since

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x}_{1} & =\boldsymbol{A}\left(\boldsymbol{x}_{0}+z_{0}\right)=\boldsymbol{A} \boldsymbol{x}_{0}+\boldsymbol{A} z_{0} \\
& =\left(\boldsymbol{b}-\boldsymbol{r}_{0}\right)+\boldsymbol{r}_{0}=\boldsymbol{b}
\end{aligned}
$$

- Process can be repeated to refine solution successively until convergence, potentially producing solution accurate to full machine precision

Iterative Refinement, continued

- Iterative refinement requires double storage, since both original matrix and its LU factorization are required
- Due to cancellation, residual usually must be computed with higher precision for iterative refinement to produce meaningful improvement
- For these reasons, iterative improvement is often impractical to use routinely, but it can still be useful in some circumstances
- For example, iterative refinement can sometimes stabilize otherwise unstable algorithm

Special Types of Linear Systems

Special Types of Linear Systems

- Work and storage can often be saved in solving linear system if matrix has special properties
- Examples include
- Symmetric: $\boldsymbol{A}=\boldsymbol{A}^{T}, a_{i j}=a_{j i}$ for all i, j
- Positive definite: $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}>0$ for all $\boldsymbol{x} \neq \mathbf{0}$
- Band: $a_{i j}=0$ for all $|i-j|>\beta$, where β is bandwidth of \boldsymbol{A}
- Sparse: most entries of \boldsymbol{A} are zero

Symmetric Positive Definite Matrices

- If \boldsymbol{A} is symmetric and positive definite, then LU factorization can be arranged so that $\boldsymbol{U}=\boldsymbol{L}^{T}$, which gives Cholesky factorization

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}
$$

where \boldsymbol{L} is lower triangular with positive diagonal entries

- Algorithm for computing it can be derived by equating corresponding entries of \boldsymbol{A} and $\boldsymbol{L L}^{T}$
- $\ln 2 \times 2$ case, for example,

$$
\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
l_{11} & 0 \\
l_{21} & l_{22}
\end{array}\right]\left[\begin{array}{cc}
l_{11} & l_{21} \\
0 & l_{22}
\end{array}\right]
$$

implies

$$
I_{11}=\sqrt{a_{11}}, \quad l_{21}=a_{21} / l_{11}, \quad l_{22}=\sqrt{a_{22}-l_{21}^{2}}
$$

Cholesky Factorization

- One way to write resulting algorithm, in which Cholesky factor \mathbf{L} overwrites lower triangle of original matrix \boldsymbol{A}, is

```
for \(k=1\) to \(n\)
    \(a_{k k}=\sqrt{a_{k k}}\)
    for \(i=k+1\) to \(n\)
        \(a_{i k}=a_{i k} / a_{k k}\)
    end
    for \(j=k+1\) to \(n\)
        for \(i=j\) to \(n\)
                \(a_{i j}=a_{i j}-a_{i k} \cdot a_{j k}\)
        end
        end
end
```


Cholesky Factorization, continued

- Features of Cholesky algorithm for symmetric positive definite matrices
- All n square roots are of positive numbers, so algorithm is well defined
- No pivoting is required to maintain numerical stability
- Only lower triangle of \boldsymbol{A} is accessed, and hence upper triangular portion need not be stored
- Only $n^{3} / 6$ multiplications and similar number of additions are required
- Thus, Cholesky factorization requires only about half work and half storage compared with LU factorization of general matrix by Gaussian elimination, and also avoids need for pivoting

Symmetric Indefinite Systems

- For symmetric indefinite \boldsymbol{A}, Cholesky factorization is not applicable, and some form of pivoting is generally required for numerical stability
- Factorization of form

$$
P A P^{T}=L D L^{T}
$$

with \boldsymbol{L} unit lower triangular and \boldsymbol{D} either tridiagonal or block diagonal with 1×1 and 2×2 diagonal blocks, can be computed stably using symmetric pivoting strategy

- In either case, cost is comparable to that of Cholesky factorization

Band Matrices

- Gaussian elimination for band matrices differs little from general case - only ranges of loops change
- Typically matrix is stored in array by diagonals to avoid storing zero entries
- If pivoting is required for numerical stability, bandwidth can grow (but no more than double)
- General purpose solver for arbitrary bandwidth is similar to code for Gaussian elimination for general matrices
- For fixed small bandwidth, band solver can be extremely simple, especially if pivoting is not required for stability

Tridiagonal Matrices

- Consider tridiagonal matrix

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
b_{1} & c_{1} & 0 & \cdots & 0 \\
a_{2} & b_{2} & c_{2} & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & a_{n-1} & b_{n-1} & c_{n-1} \\
0 & \cdots & 0 & a_{n} & b_{n}
\end{array}\right]
$$

- Gaussian elimination without pivoting reduces to

$$
\begin{aligned}
& d_{1}=b_{1} \\
& \text { for } i=2 \text { to } n \\
& \quad m_{i}=a_{i} / d_{i-1} \\
& \quad d_{i}=b_{i}-m_{i} c_{i-1} \\
& \text { end }
\end{aligned}
$$

Tridiagonal Matrices, continued

- LU factorization of \boldsymbol{A} is then given by

$$
\boldsymbol{L}=\left[\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
m_{2} & 1 & \ddots & & \vdots \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & m_{n-1} & 1 & 0 \\
0 & \cdots & 0 & m_{n} & 1
\end{array}\right], \quad \boldsymbol{U}=\left[\begin{array}{ccccc}
d_{1} & c_{1} & 0 & \cdots & 0 \\
0 & d_{2} & c_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
\vdots & & \ddots & d_{n-1} & c_{n-1} \\
0 & \cdots & \cdots & 0 & d_{n}
\end{array}\right]
$$

General Band Matrices

- In general, band system of bandwidth β requires $\mathcal{O}(\beta n)$ storage, and its factorization requires $\mathcal{O}\left(\beta^{2} n\right)$ work
- Compared with full system, savings is substantial if $\beta \ll n$

Iterative Methods for Linear Systems

- Gaussian elimination is direct method for solving linear system, producing exact solution in finite number of steps (in exact arithmetic)
- Iterative methods begin with initial guess for solution and successively improve it until desired accuracy attained
- In theory, it might take infinite number of iterations to converge to exact solution, but in practice iterations are terminated when residual is as small as desired
- For some types of problems, iterative methods have significant advantages over direct methods
- We will study specific iterative methods later when we consider solution of partial differential equations

Software for Linear Systems

LINPACK and LAPACK

- LINPACK is software package for solving wide variety of systems of linear equations, both general dense systems and special systems, such as symmetric or banded
- Solving linear systems is of such fundamental importance in scientific computing that LINPACK has become standard benchmark for comparing performance of computers
- LAPACK is more recent replacement for LINPACK featuring higher performance on modern computer architectures, including many parallel computers
- Both LINPACK and LAPACK are available from Netlib.org
- Linear system solvers underlying MATLAB and Python's NumPy and SciPy libraries are based on LAPACK

BLAS - Basic Linear Algebra Subprograms

- High-level routines in LINPACK and LAPACK are based on lower-level Basic Linear Algebra Subprograms (BLAS)
- BLAS encapsulate basic operations on vectors and matrices so they can be optimized for given computer architecture while high-level routines that call them remain portable
- Higher-level BLAS encapsulate matrix-vector and matrix-matrix operations for better utilization of memory hierarchies such as cache and virtual memory with paging
- Generic versions of BLAS are available from Netlib.org, and many computer vendors provide custom versions optimized for their particular systems

Examples of BLAS

Level	Data	Work	Examples	Function
1	$\mathcal{O}(n)$	$\mathcal{O}(n)$	saxpy	Scalar \times vector + vector
			sdot	Inner product
			snrm2	Euclidean vector norm
2	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{2}\right)$	sgemv 	
strsv	Matrix-vector product			
sger	Triangular solution			
3	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{3}\right)$	sgemm	Matrix-matrix product
			strsm	Multiple triang. solutions
			ssyrk	Rank-k update

Level-3 BLAS have more opportunity for data reuse, and hence higher performance, because they perform more operations per data item than lower-level BLAS

Summary - Solving Linear Systems

- Solving linear systems is fundamental in scientific computing
- Sensitivity of solution to linear system is measured by cond (\boldsymbol{A})
- Triangular linear system is easily solved by successive substitution
- General linear system can be solved by transforming it to triangular form by Gaussian elimination (LU factorization)
- Pivoting is essential for stable implementation of Gaussian elimination
- Specialized algorithms and software are available for solving particular types of linear systems

[^0]: ${ }^{\dagger}$ Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright © 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

