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Stochastic Simulation

Stochastic simulation mimics or replicates behavior of
system by exploiting randomness to obtain statistical
sample of possible outcomes

Because of randomness involved, simulation methods are
also known as Monte Carlo methods

Such methods are useful for studying
Nondeterministic (stochastic) processes
Deterministic systems that are too complicated to model
analytically
Deterministic problems whose high dimensionality makes
standard discretizations infeasible (e.g., Monte Carlo
integration)

< interactive example > < interactive example >
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http://www.cs.illinois.edu/~heath/iem/integration/mntcurve/
http://www.cs.illinois.edu/~heath/iem/integration/mntcirc/
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Stochastic Simulation, continued

Two main requirements for using stochastic simulation
methods are

Knowledge of relevant probability distributions
Supply of random numbers for making random choices

Knowledge of relevant probability distributions depends on
theoretical or empirical information about physical system
being simulated

By simulating large number of trials, probability distribution
of overall results can be approximated, with accuracy
attained increasing with number of trials

< interactive example > < interactive example >
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http://www.cs.illinois.edu/~heath/iem/random/bfnneedl/
http://www.cs.illinois.edu/~heath/iem/random/walklplc/
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Randomness

Randomness is somewhat difficult to define, but we
usually associate randomness with unpredictability

One definition is that sequence of numbers is random if it
has no shorter description than itself

Physical processes, such as flipping coin or tossing dice,
are deterministic if enough is known about equations
governing their motion and appropriate initial conditions

Even for deterministic systems, extreme sensitivity to initial
conditions can make their chaotic behavior unpredictable
in practice

Wheter deterministic or not, highly complicated systems
are often tractable only by stochastic simulation methods
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Repeatability

In addition to unpredictability, another distinguishing
characteristic of true randomness is lack of repeatability

However, lack of repeatability could make testing
algorithms or debugging computer programs difficult, if not
impossible

Repeatability is desirable in this sense, but care must
taken to ensure independence among trials

Michael T. Heath Scientific Computing 5 / 17



Stochastic Simulation and Randomness
Random Number Generators

Quasi-Random Sequences

Pseudorandom Numbers

Although random numbers were once supplied by physical
processes or tables, they are now produced by computers

Computer algorithms for generating random numbers are
in fact deterministic, although sequence generated may
appear random in that it exhibits no apparent pattern

Such sequences of numbers are more accurately called
pseudorandom

Although pseudorandom sequence may appear random, it
is in fact quite predictable and reproducible, which is
important for debugging and verifying results

Because only finite number of numbers can be represented
in computer, any sequence must eventually repeat
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Random Number Generators

Properties of good random number generator as possible

Random pattern : passes statistical tests of randomness

Long period : goes as long as possible before repeating

Efficiency : executes rapidly and requires little storage

Repeatability : produces same sequence if started with
same initial conditions

Portability : runs on different kinds of computers and is
capable of producing same sequence on each

Michael T. Heath Scientific Computing 7 / 17



Stochastic Simulation and Randomness
Random Number Generators

Quasi-Random Sequences

Random Number Generators, continued

Early attempts at producing random number generators on
computers often relied on complicated procedures whose
very complexity was presumed to ensure randomness

Example is “midsquare” method, which squares each
member of sequence and takes middle portion of result as
next member of sequence

Lack of theoretical understanding of such methods proved
disastrous, and it was soon recognized that simple
methods with well-understood theoretical basis are far
preferable
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Congruential Generators

Congruential random number generators have form

xk = (axk−1 + c) (mod M)

where a and c are given integers

Starting integer x0 is called seed

Integer M is approximately (often equal to) largest integer
representable on machine

Quality of such generator depends on choices of a and c,
and in any case its period cannot exceed M
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Congruential Generators, continued

It is possible to obtain reasonably good random number
generator using this method, but values of a and c must be
chosen very carefully

Random number generators supplied with many computer
systems are of congruential type, and some are
notoriously poor

Congruential generator produces random integers
between 0 and M

To produce random floating-point numbers, say uniformly
distributed on interval [0, 1), random integers must be
divided by M (not integer division!)

< interactive example >

Michael T. Heath Scientific Computing 10 / 17

http://www.cs.illinois.edu/~heath/iem/random/pairplot/
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Fibonacci Generators

Fibonacci generators produce floating-point random
numbers on interval [0, 1) directly as difference, sum, or
product of previous values

Typical example is subtractive generator

xk = xk−17 − xk−5

This generator is said to have lags of 17 and 5

Lags must be chosen carefully to produce good subtractive
generator

Such formula may produce negative result, in which case
remedy is to add 1 to get back into interval [0, 1)
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Fibonacci Generators, continued

Fibonacci generators require more storage than
congruential generator, and also require special procedure
to get started

Fibonacci generators require no division to produce
floating-point results

Well-designed Fibonacci generators have very good
statistical properties

Fibonacci generators can have much longer period than
congruential generators, since repetition of one member of
sequence does not entail that all subsequent members will
also repeat in same order
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Sampling on Other Intervals

If we need uniform distribution on some other interval [a, b),
then we can modify values xk generated on [0, 1) by
transformation

(b− a)xk + a

to obtain random numbers that are uniformly distributed on
desired interval
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Nonuniform Distributions

Sampling from nonuniform distributions is more difficult

If cumulative distribution function of desired probability
density function is easily invertible, then we can generate
random samples with desired distribution by generating
uniform random numbers and inverting them

For example, to sample from exponential distribution

f(t) = λe−λt, t > 0

we can take
xk = − log(1− yk)/λ

where yk is uniform on [0, 1)

Unfortunately, many important distributions are not easily
invertible, and special methods must be employed to
generate random numbers efficiently for these distributions
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Normal Distribution

Important example is generation of random numbers that
are normally distributed with given mean and variance

Available routines often assume mean 0 and variance 1

If some other mean µ and variance σ2 are desired, then
each value xk produced by routine can be modified by
transformation σxk + µ to achieve desired normal
distribution
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Quasi-Random Sequences

For some applications, achieving reasonably uniform
coverage of sampled volume can be more important than
whether sample points are truly random

Truly random sequences tend to exhibit random clumping,
leading to uneven coverage of sampled volume for given
number of points

Perfectly uniform coverage can be achieved by using
regular grid of sample points, but this approach does not
scale well to higher dimensions

Compromise between these extremes of coverage and
randomness is provided by quasi-random sequences
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Quasi-Random Sequences, continued

Quasi-random sequences are not random at all, but are
carefully constructed to give uniform coverage of sampled
volume while maintaining reasonably random appearance

By design, points tend to avoid each other, so clumping
associated with true randomness is eliminated

< interactive example >
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http://www.cs.illinois.edu/~heath/iem/random/quasirnd/
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