Method of Undetermined Coefficients

Quadrature Rules

Integration

Scientific Computing: An Introductory Survey
Chapter 8 – Numerical Integration and Differentiation

Prof. Michael T. Heath
Department of Computer Science
University of Illinois at Urbana-Champaign

Copyright © 2002. Reproduction permitted for noncommercial, educational use only.

Integration

- For \(f : \mathbb{R} \to \mathbb{R} \), definite integral over interval \([a, b]\)
 \[
 I(f) = \int_a^b f(x) \, dx
 \]
 is defined by limit of Riemann sums
 \[
 R_n = \sum_{i=1}^n (x_{i+1} - x_i) f(\xi_i)
 \]
 - Riemann integral exists provided integrand \(f \) is bounded and continuous almost everywhere
 - Absolute condition number of integration with respect to perturbations in integrand is \(b - a \)
 - Integration is inherently well-conditioned because of its smoothing effect

Quadrature Rules

- An \(n \)-point quadrature rule has form
 \[
 Q_n(f) = \sum_{i=1}^n w_i f(x_i)
 \]
 - Points \(x_i \) are called nodes or abscissas
 - Multipliers \(w_i \) are called weights
 - Quadrature rule is
 - open if \(a < x_1 \) and \(x_n < b \)
 - closed if \(a = x_1 \) and \(x_n = b \)

Method of Undetermined Coefficients

- Alternative derivation of quadrature rule uses method of undetermined coefficients
- To derive \(n \)-point rule on interval \([a, b]\), take nodes \(x_1, \ldots, x_n \) as given and consider weights \(w_1, \ldots, w_n \) as coefficients to be determined
- Force quadrature rule to integrate first \(n \) polynomial basis functions exactly, and by linearity, it will then integrate any polynomial of degree \(n - 1 \) exactly
- Thus we obtain system of moment equations that determines weights for quadrature rule

Outline

- Numerical Integration
- Numerical Differentiation
- Richardson Extrapolation

Quadrature Rules, continued

- Quadrature rules are based on polynomial interpolation
 - Integrand function \(f \) is sampled at finite set of points
 - Polynomial interpolating those points is determined
 - Integral of interpolant is taken as estimate for integral of original function
 - In practice, interpolating polynomial is not determined explicitly but used to determine weights corresponding to nodes
 - If Lagrange is interpolation used, then weights are given by
 \[
 w_i = \int_a^b \ell_i(x), \quad i = 1, \ldots, n
 \]

Example: Undetermined Coefficients

- Derive 3-point rule
 \[
 Q_3(f) = w_1 f(x_1) + w_2 f(x_2) + w_3 f(x_3)
 \]
 on interval \([a, b]\) using monomial basis
 - Take \(x_1 = a, x_2 = (a + b)/2, \) and \(x_3 = b \) as nodes
 - First three monomials are \(1, x, \) and \(x^2 \)
 - Resulting system of moment equations is
 \[
 \begin{align*}
 w_1 \cdot 1 + w_2 \cdot 1 + w_3 \cdot 1 &= \int_a^b 1 \, dx = x_n = b - a \\
 w_1 \cdot a + w_2 \cdot (a + b)/2 + w_3 \cdot b &= \int_a^b x \, dx = (x^2/2)|_a^b = (b^3 - a^3)/2 \\
 w_1 \cdot a^2 + w_2 \cdot ((a + b)/2)^2 + w_3 \cdot b^2 &= \int_a^b x^2 \, dx = (x^3/3)|_a^b = (b^3 - a^3)/3
 \end{align*}
 \]
Example: Newton-Cotes Quadrature

In matrix form, linear system is
\[
\begin{bmatrix}
1 & 1 & 1 \\
(a + b)/2 & b & (a + b)/2 \\
5 & (a + b)/3 & b^3
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2 \\
w_3
\end{bmatrix}
= \begin{bmatrix}
b - a \\
(b^2 - a^2)/2 \\
(b^3 - a^3)/3
\end{bmatrix}
\]

Solving system by Gaussian elimination, we obtain weights
\[
w_1 = \frac{b - a}{6}, \quad w_2 = \frac{2(b - a)}{3}, \quad w_3 = \frac{b - a}{6}
\]
which is known as Simpson's rule

Accuracy of Quadrature Rules

- Quadrature rule is of degree \(d \) if it is exact for every polynomial of degree \(d \), but not exact for some polynomial of degree \(d + 1 \)
- By construction, \(n \)-point interpolatory quadrature rule is of degree at least \(n - 1 \)
- Rough error bound
\[
|I(f) - Q_n(f)| \leq \frac{1}{2} b^{n+1} \|f^{(n)}\|_{\infty}
\]
where \(h = \max(x_{i+1} - x_i : i = 1, \ldots, n - 1) \), shows that \(Q_n(f) \to I(f) \) as \(n \to \infty \), provided \(f^{(n)} \) remains well behaved
- Higher accuracy can be obtained by increasing \(n \) or by decreasing \(h \)

Stability of Quadrature Rules

- Absolute condition number of quadrature rule is sum of magnitudes of weights,
\[
\sum_{i=1}^{n} |w_i|
\]
- If weights are all nonnegative, then absolute condition number of quadrature rule is \(b - a \), same as that of underlying integral, so rule is stable
- If any weights are negative, then absolute condition number can be much larger, and rule can be unstable

Example: Newton-Cotes Quadrature

Approximate integral \(I(f) = \int_a^b f(x) \, dx \approx 0.746824 \),
\[
M(f) = (1/0) \exp(-1/4) \approx 0.778801
\]
\[
T(f) = (1/2) \exp(0) + \exp(-1) \approx 0.683940
\]
\[
S(f) = (1/6) \exp(0) + 4 \exp(-1/4) + \exp(-1) \approx 0.747180
\]

Method of Undetermined Coefficients

- More generally, for any \(n \) and choice of nodes \(x_1, \ldots, x_n \),

\[
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
x_1 & x_2 & \cdots & x_n \\
x_1^2 & x_2^2 & \cdots & x_n^2
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_2 \\
w_3
\end{bmatrix}
= \begin{bmatrix}
b - a \\
(b^2 - a^2)/2 \\
(b^3 - a^3)/3
\end{bmatrix}
\]
determines weights \(w_1, \ldots, w_n \)

Progressive Quadrature Rules

- Sequence of quadrature rules is progressive if nodes of \(Q_{n_k} \) are subset of nodes of \(Q_{n_{k+1}} \) for \(n_{k+1} > n_k \)
- For progressive rules, function evaluations used in one rule can be reused in another, reducing overall cost
- To attain higher accuracy, we can increase number of points \(n \) or subdivide interval into smaller subintervals
- In either case, efficiency is enhanced if successive rules are progressive so that fewer new evaluations of integrand are required

Newton-Cotes Quadrature

Newton-Cotes quadrature rules use equally spaced nodes in interval \([a, b] \)
- Midpoint rule
\[
M(f) = (b - a) f \left(\frac{a + b}{2} \right)
\]
- Trapezoid rule
\[
T(f) = \frac{b - a}{2} \left(f(a) + f(b) \right)
\]
- Simpson's rule
\[
S(f) = \frac{b - a}{6} \left(f(a) + 4 f \left(\frac{a + b}{2} \right) + f(b) \right)
\]

Error Estimation

- Expanding integrand \(f \) in Taylor series about midpoint \(m = (a + b)/2 \) of interval \([a, b] \),
\[
\begin{align*}
f(x) &= f(m) + f'(m)(x - m) + \frac{f''(m)}{2!}(x - m)^2 \\
&\quad + \frac{f'''(m)}{3!}(x - m)^3 + \frac{f^{(4)}(m)}{4!}(x - m)^4 + \ldots
\end{align*}
\]
- Integrating from \(a \) to \(b \), odd-order terms drop out, yielding
\[
I(f) = f(m)(b - a) + \frac{f''(m)}{24}(b - a)^3 + \frac{f^{(4)}(m)}{1920}(b - a)^5 + \ldots
\]
where \(E(f) \) and \(F(f) \) represent first two terms in error expansion for midpoint rule
Error Estimation, continued

- If we substitute \(x = a \) and \(x = b \) into Taylor series, add two series together, observe once again that odd-order terms drop out, solve for \(f(n) \), and substitute into midpoint rule, we obtain
 \[
 I(f) = T(f) - 2E(f) - 4F(f) - \ldots
 \]
- Thus, provided length of interval is sufficiently small and \(f^{(2k)} \) is well behaved, midpoint rule is about twice as accurate as trapezoid rule
- Halving length of interval decreases error in either rule by factor of about \(1/8 \)

Example: Error Estimation

- We illustrate error estimation by computing approximate value for integral \(\int_a^b x^2 \, dx = 1/3 \)
 \[
 M(f) = (1 - 0)(1/2)^2 = 1/4
 \]
 \[
 T(f) = 1 - 0 (0^2 + 1^2) = 1/2
 \]
 \[
 E(f) \approx (T(f) - M(f))/3 = (1/4)/3 = 1/12
 \]
- Error in \(M(f) \) is about \(1/12 \), error in \(T(f) \) is about \(-1/6 \)
- Also,
 \[
 S(f) = (2/3)M(f) + (1/3)T(f) = (2/3)(1/4) + (1/3)(1/2) = 1/3
 \]
 which is exact for this integral, as expected

Accuracy of Newton-Cotes Quadrature

- In general, odd-order Newton-Cotes rule gains extra degree beyond that of polynomial interpolant on which it is based
- \(n \)-point Newton-Cotes rule is of degree \(n - 1 \) if \(n \) is even, but of degree \(n \) if \(n \) is odd
- This phenomenon is due to cancellation of positive and negative errors

Drawbacks of Newton-Cotes Rules

- Newton-Cotes quadrature rules are simple and often effective, but they have drawbacks
- Using large number of equally spaced nodes may incur erratic behavior associated with high-degree polynomial interpolation (e.g., weights may be negative)
- Indeed, every \(n \)-point Newton-Cotes rule with \(n \geq 11 \) has at least one negative weight, and \(\sum_{j=1}^{n} |w_j| \rightarrow \infty \) as \(n \rightarrow \infty \), so Newton-Cotes rules become arbitrarily ill-conditioned
- Newton-Cotes rules are not of highest degree possible for number of nodes used

Gaussian Quadrature

- Gaussian quadrature rules are based on polynomial interpolation, but nodes as well as weights are chosen to maximize degree of resulting rule
- With \(2n \) parameters, we can attain degree of \(2n - 1 \)
- Gaussian quadrature rules can be derived by method of undetermined coefficients, but resulting system of moment equations that determines nodes and weights is nonlinear
- Also, nodes are usually irrational, even if endpoints of interval are rational
- Although inconvenient for hand computation, nodes and weights are tabulated in advance and stored in subroutine for use on computer
Example: Gaussian Quadrature Rule

- Derive two-point Gaussian rule on $[-1, 1]$,
 \[G_2(f) = w_1 f(x_1) + w_2 f(x_2) \]
 where nodes x_i and weights w_i are chosen to maximize degree of resulting rule
- We use method of undetermined coefficients, but now nodes as well as weights are unknown parameters to be determined
- Four parameters are to be determined, so we expect to be able to integrate cubic polynomials exactly, since cubics depend on four parameters

Change of Interval, continued

- One solution of this system of four nonlinear equations in four unknowns is given by
 \[x_1 = -1/\sqrt{3}, \quad x_2 = 1/\sqrt{3}, \quad w_1 = 1, \quad w_2 = 1 \]
- Another solution reverses signs of x_1 and x_2
- Resulting two-point Gaussian rule has form
 \[G_2(f) = f(-1/\sqrt{3}) + f(1/\sqrt{3}) \]
 and by construction it has degree three
- In general, for each n there is unique n-point Gaussian rule, and it is of degree $2n - 1$
- Gaussian quadrature rules can also be derived using orthogonal polynomials

Change of Interval, continued

- Many transformations are possible, but simple linear transformation
 \[t = \frac{(b - a)x + a\beta - bx}{\beta - a} \]
 has advantage of preserving degree of quadrature rule

Example, continued

- Requiring rule to integrate first four monomials exactly gives moment equations
 \[
 \begin{align*}
 w_1 + w_2 &= \int_{-1}^{1} 1 \, dx = x^0_{-1,1} = 2 \\
 w_1 x_1 + w_2 x_2 &= \int_{-1}^{1} x \, dx = (x^2/2)_{-1,1} = 0 \\
 w_1 x_1^2 + w_2 x_2^2 &= \int_{-1}^{1} x^2 \, dx = (x^3/3)_{-1,1} = 2/3 \\
 w_1 x_1^3 + w_2 x_2^3 &= \int_{-1}^{1} x^3 \, dx = (x^4/4)_{-1,1} = 0
 \end{align*}
 \]
Colorado State University — Michael T. Heath
Scientific Computing 31 / 61

Gaussian Quadrature

- Gaussian quadrature rules have maximal degree and optimal accuracy for number of nodes used
- Weights are always positive and approximate integral always converges to exact integral as $n \to \infty$
- Unfortunately, Gaussian rules of different orders have no nodes in common (except possibly midpoint), so Gaussian rules are not progressive
- Thus, estimating error using Gaussian rules of different order requires evaluating integrand function at full set of nodes of both rules

Progressive Gaussian Quadrature

- Avoiding this additional work is motivation for Kronrod quadrature rules
- Such rules come in pairs, n-point Gaussian rule G_n, and $(2n + 1)$-point Kronrod rule K_{2n+1}, whose nodes are optimally chosen subject to constraint that all nodes of G_n are reused in K_{2n+1}
- $(2n + 1)$-point Kronrod rule is of degree $3n + 1$, whereas true $(2n + 1)$-point Gaussian rule would be of degree $4n + 1$
- In using Gauss-Kronrod pair, value of K_{2n+1} is taken as approximation to integral, and error estimate is given by
 \[(200|G_n - K_{2n+1}|)^{1/5} \]
Composite Quadrature

- Alternative to using more nodes and higher degree rule is to subdivide original interval into subintervals, then apply simple quadrature rule in each subinterval.
- Summing partial results then yields approximation to overall integral.
- This approach is equivalent to using piecewise interpolation to derive composite quadrature rule.
- Composite rule is always stable if underlying simple rule is stable.
- Approximate integral converges to exact integral as number of subintervals goes to infinity provided underlying simple rule has degree at least zero.

Examples: Composite Quadrature

- Composite quadrature offers simple means of estimating error by using two different levels of subdivision, which is easily made progressive.
- For example, halving interval length reduces error in midpoint or trapezoid rule by factor of about 1/8.
- Halving width of each subinterval means twice as many subintervals are required, so overall reduction in error is by factor of about 1/4.
- If h denotes subinterval length, then dominant term in error of composite midpoint or trapezoid rules is $O(h^2)$.
- Dominant term in error of composite Simpson’s rule is $O(h^4)$, so halving subinterval length reduces error by factor of about 1/16.

Adaptive Quadrature, continued

- Adaptive quadrature tends to be effective in practice, but it can be fooled: both approximate integral and error estimate can be completely wrong.
- Integrand function is sampled at only finite number of points, so significant features of integrand may be missed.
- For example, interval of integration may be very wide but “interesting” behavior of integrand may be confined to narrow range.
- Sampling by automatic routine may miss interesting part of integrand behavior, and resulting value for integral may be completely wrong.

Integrating Tabular Data

- If integrand is defined only by table of its values at discrete points, then reasonable approach is to integrate piecewise interpolant.
- For example, integrating piecewise linear interpolant to tabular data gives composite trapezoid rule.
- Excellent method for integrating tabular data is to use Hermite cubic or cubic spline interpolation.
- In effect, overall integral is computed by integrating each of cubic pieces that make up interpolant.
- This facility is provided by many spline interpolation packages.
Improper Integrals

To compute integral over infinite or semi-infinite interval, several approaches are possible

- Replace infinite limits of integration by carefully chosen finite values
- Transform variable of integration so that new interval is finite, but care must be taken not to introduce singularities
- Use quadrature rule designed for infinite interval

Double Integrals

Approaches for evaluating double integrals include

- Use automatic one-dimensional quadrature routine for each dimension, one for outer integral and another for inner integral
- Use product quadrature rule resulting from applying one-dimensional rule to successive dimensions
- Use non-product quadrature rule for regions such as triangles

Multiple Integrals

- To evaluate multiple integrals in higher dimensions, only generally viable approach is Monte Carlo method
- Function is sampled at \(n \) points distributed randomly in domain of integration, and mean of function values is multiplied by area (or volume, etc.) of domain to obtain estimate for integral
- Error in estimate goes to zero as \(1/\sqrt{n} \), so to gain one additional decimal digit of accuracy requires increasing \(n \) by factor of 100
- For this reason, Monte Carlo calculations of integrals often require millions of evaluations of integrand

Integral Equations

- Typical integral equation has form
 \[
 \int_a^b K(s, t)u(t)\, dt = f(s)
 \]
 where kernel \(K \) and right-hand side \(f \) are known functions, and unknown function \(u \) is to be determined
- Solve numerically by discretizing variables and replacing integral by quadrature rule
 \[
 \sum_{j=1}^{n} w_j K(s_j, t_i)u(t_i) = f(s_i), \quad i = 1, \ldots, n
 \]
 This system of linear algebraic equations \(Ax = y \), where \(a_{ij} = w_j K(s_i, t_j) \), \(y_i = f(s_i) \), and \(x_j = u(t_j) \), is solved for \(x \) to obtain discrete sample of approximate values of \(u \)

Numerical Differentiation

- Differentiation is inherently sensitive, as small perturbations in data can cause large changes in result
- Differentiation is inverse of integration, which is inherently stable because of its smoothing effect
- For example, two functions shown below have very similar definite integrals but very different derivatives

- Richardson Extrapolation
- Finite Difference Approximations
- Automatic Differentiation

Numerical Integration

- Constrained optimization
- Regularization
- Truncated SVD
Finite Difference Approximations

- Given smooth function \(f : \mathbb{R} \rightarrow \mathbb{R} \), we wish to approximate its first and second derivatives at point \(x \).
- Consider Taylor series expansions:
 \[
 f(x + h) = f(x) + f'(x)h + \frac{f''(x)}{2!}h^2 + \frac{f'''(x)}{3!}h^3 + \cdots
 \]
 \[
 f(x - h) = f(x) - f'(x)h + \frac{f''(x)}{2!}h^2 - \frac{f'''(x)}{3!}h^3 + \cdots
 \]
- Solving for \(f'(x) \) in first series, obtain forward difference approximation:
 \[
 f'(x) = \frac{f(x + h) - f(x) - f''(x)h}{h} + \cdots \approx \frac{f(x + h) - f(x)}{h} - f''(x)h^2 + \cdots
 \]
 which is first-order accurate since dominant term in remainder of series is \(O(h) \).

Richardson Extrapolation

- In many problems, such as numerical integration or differentiation, approximate value for some quantity is computed based on some step size.
- Ideally, we would like to obtain limiting value as step size approaches zero, but we cannot take step size arbitrarily small because of excessive cost or rounding error.
- Based on values for nonzero step sizes, however, we may be able to estimate value for step size of zero.
- One way to do this is called Richardson extrapolation.

- Suppose we have computed \(F \) for two step sizes, say \(h \) and \(h/q \) for some positive integer \(q \).
- Then we have:
 \[
 F(h) = a_0 + a_1h^p + O(h^r)
 \]
 \[
 F(h/q) = a_0 + a_1(h/q)^p + O(h^r) = a_0 + a_1q^{-r}h^p + O(h^r)
 \]
 This system of two linear equations in two unknowns \(a_0 \) and \(a_1 \) is easily solved to obtain:
 \[
 a_0 = F(h) - F(h/q)q^p \frac{1}{q^p - 1} + O(h^r)
 \]
 Accuracy of improved value, \(a_0 \), is \(O(h^r) \).

Automatic Differentiation

- Computer program expressing function is composed of basic arithmetic operations and elementary functions, each of whose derivatives is easily computed.
- Derivatives can be propagated through program by repeated use of chain rule, computing derivative of function step by step along with function itself.
- Result is true derivative of original function, subject only to rounding error but suffering no discretization error.
- Software packages are available implementing this automatic differentiation (AD) approach.

Richardson Extrapolation, continued

- Let \(F(h) \) denote value obtained with step size \(h \).
- If we compute value of \(F \) for some nonzero step sizes, and if we know theoretical behavior of \(F(h) \) as \(h \rightarrow 0 \), then we can extrapolate from known values to obtain approximate value for \(F(0) \).
- Suppose that:
 \[
 F(h) = a_0 + a_1h^p + O(h^r)
 \]
 as \(h \rightarrow 0 \) for some \(p \) and \(r \), with \(r > p \).
- Assume we know values of \(p \) and \(r \), but not \(a_0 \) or \(a_1 \) (indeed, \(F(0) = a_0 \) is what we seek).
Example: Richardson Extrapolation

- Use Richardson extrapolation to improve accuracy of finite difference approximation to derivative of function $\sin(x)$ at $x = 1$.
- Using first-order accurate forward difference approximation, we have

 $$F(h) = a_0 + a_1 h + O(h^2)$$

 so $p = 1$ and $r = 2$ in this instance.
- Using step sizes of $h = 0.5$ and $h/2 = 0.25$ (i.e., $q = 2$), we obtain

 $$F(h) = \frac{\sin(1.5) - \sin(1)}{0.5} = 0.312048$$
 $$F(h/2) = \frac{\sin(1.25) - \sin(1)}{0.25} = 0.430055$$

 Michael T. Heath Scientific Computing 07 / 61

Example: Romberg Integration

- As another example, evaluate

 $$\int_{0}^{\pi/2} \sin(x) \, dx$$

- Using composite trapezoid rule, we have

 $$F(h) = a_0 + a_1 h^2 + O(h^4)$$

 so $p = 2$ and $r = 4$ in this instance.
- With $h = \pi/2$, $F(h) = F(\pi/2) = 0.785398$
- With $q = 2$, $F(h/2) = F(\pi/4) = 0.948059$

 Michael T. Heath Scientific Computing 08 / 61

Romberg Integration

- Continued Richardson extrapolations using composite trapezoid rule with successively halved step sizes is called Romberg integration.
- It is capable of producing very high accuracy (up to limit imposed by arithmetic precision) for very smooth integrands.
- It is often implemented in automatic (though nonadaptive) fashion, with extrapolations continuing until change in successive values falls below specified error tolerance.

 Michael T. Heath Scientific Computing 09 / 61